GROUP BY的扩展主要包括ROLLUP,CUBE,GROUPING SETS三种形式。

ROLLUP

rollup相对于简单的分组合计增加了小计和合计,解释起来会比较抽象,下面我们来看看具体事例。

例1,统计不同部门工资的总和和所有部门工资的总和。

SQL> select deptno,sum(sal) from emp group by rollup(deptno);

    DEPTNO   SUM(SAL)
---------- ----------
10 8750
20 10875
30 9400
29025

例2,该例中先对deptno进行分组,再对job进行分组

SQL> select deptno,job,sum(sal) from emp group by rollup(deptno,job);

    DEPTNO JOB           SUM(SAL)
---------- --------- ----------
10 CLERK 1300 --10号部门中JOB为CLERK的工资的总和
10 MANAGER 2450
10 PRESIDENT 5000
10 8750 --10号所有工种工资的总和
20 CLERK 1900
20 ANALYST 6000
20 MANAGER 2975
20 10875
30 CLERK 950
30 MANAGER 2850
30 SALESMAN 5600
30 9400
29025 --所有部门,所有工种工资的总和
13 rows selected.

如果要用普通的分组函数实现,可用UNION ALL语句:

--实现单个部门,单个工种的工资的总和
select deptno,job,sum(sal) from emp group by deptno,job
union all
--实现单个部门工资的总和
select deptno,null,sum(sal) from emp group by deptno
union all
--实现所有部门工资的总和
select null,null,sum(sal) from emp
order by 1,2

下面我们分别来看看两者的执行计划及统计信息,

ROLLUP语句:

Execution Plan
-----------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
-----------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 11 | 132 | 3 (34)| 00:00:01 |
| 1 | SORT GROUP BY ROLLUP| | 11 | 132 | 3 (34)| 00:00:01 |
| 2 | TABLE ACCESS FULL | EMP | 14 | 168 | 2 (0)| 00:00:01 |
-----------------------------------------------------------------------------
Statistics
----------------------------------------------------------
0 recursive calls
0 db block gets
2 consistent gets
0 physical reads
0 redo size
895 bytes sent via SQL*Net to client
519 bytes received via SQL*Net from client
2 SQL*Net roundtrips to/from client
1 sorts (memory)
0 sorts (disk)
13 rows processed

UNION ALL语句:

Execution Plan
-----------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
-----------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 15 | 150 | 9 (34)| 00:00:01 |
| 1 | SORT ORDER BY | | 15 | 150 | 8 (75)| 00:00:01 |
| 2 | UNION-ALL | | | | | |
| 3 | HASH GROUP BY | | 11 | 132 | 3 (34)| 00:00:01 |
| 4 | TABLE ACCESS FULL| EMP | 14 | 168 | 2 (0)| 00:00:01 |
| 5 | HASH GROUP BY | | 3 | 15 | 3 (34)| 00:00:01 |
| 6 | TABLE ACCESS FULL| EMP | 14 | 70 | 2 (0)| 00:00:01 |
| 7 | SORT AGGREGATE | | 1 | 3 | | |
| 8 | TABLE ACCESS FULL| EMP | 14 | 42 | 2 (0)| 00:00:01 |
-----------------------------------------------------------------------------

Statistics
----------------------------------------------------------
0 recursive calls
0 db block gets
6 consistent gets
0 physical reads
0 redo size
895 bytes sent via SQL*Net to client
519 bytes received via SQL*Net from client
2 SQL*Net roundtrips to/from client
1 sorts (memory)
0 sorts (disk)
13 rows processed

不难看出,相同的功能实现,ROLLUP相对于UNION ALL效率有了极大的提升。

CUBE

cube相对于rollup,结果输出更加详细。

例1,在本例中还不是很明显。

SQL> select deptno,sum(sal) from emp group by cube(deptno);

    DEPTNO   SUM(SAL)
---------- ----------
29025
10 8750
20 10875
30 9400

例2,相对于rollup,cube还对工种这一列进行了专门的汇总。

SQL> select deptno,job,sum(sal) from emp group by cube(deptno,job);

    DEPTNO JOB           SUM(SAL)
---------- --------- ----------
29025
CLERK 4150
ANALYST 6000
MANAGER 8275
SALESMAN 5600
PRESIDENT 5000
10 8750
10 CLERK 1300
10 MANAGER 2450
10 PRESIDENT 5000
20 10875
20 CLERK 1900
20 ANALYST 6000
20 MANAGER 2975
30 9400
30 CLERK 950
30 MANAGER 2850
30 SALESMAN 5600
18 rows selected.

GROUPING SETS

GROUPING SETS相对于ROLLUP和CUBE,结果是分类统计的,可读性更好一些。

例1:

SQL> select deptno,job,to_char(hiredate,'yyyy')hireyear,sum(sal) from emp group by grouping sets(deptno,job,to_char(hiredate,'yyyy'));

    DEPTNO JOB         HIRE   SUM(SAL)
---------- --------- ---- ----------
CLERK 4150
SALESMAN 5600
PRESIDENT 5000
MANAGER 8275
ANALYST 6000
30 9400
20 10875
10 8750
1987 4100
1980 800
1982 1300
1981 22825

例2:

SQL> select deptno,job,sum(sal) from emp group by grouping sets(deptno,job);

    DEPTNO JOB           SUM(SAL)
---------- --------- ----------
CLERK 4150
SALESMAN 5600
PRESIDENT 5000
MANAGER 8275
ANALYST 6000
30 9400
20 10875
10 8750
8 rows selected.

对于该例,如何用UNION ALL实现呢?

select null deptno,job,sum(sal) from emp group by job
union all
select deptno,null,sum(sal) from emp group by deptno;

两者的执行计划及统计信息分别如下:

GROUPING SETS:

Execution Plan
--------------------------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--------------------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 11 | 352 | 10 (20)| 00:00:01 |
| 1 | TEMP TABLE TRANSFORMATION | | | | | |
| 2 | LOAD AS SELECT | SYS_TEMP_0FD9D6795_E71F79 | | | | |
| 3 | TABLE ACCESS FULL | EMP | 14 | 168 | 2 (0)| 00:00:01 |
| 4 | LOAD AS SELECT | SYS_TEMP_0FD9D6796_E71F79 | | | | |
| 5 | HASH GROUP BY | | 1 | 19 | 3 (34)| 00:00:01 |
| 6 | TABLE ACCESS FULL | SYS_TEMP_0FD9D6795_E71F79 | 1 | 19 | 2 (0)| 00:00:01 |
| 7 | LOAD AS SELECT | SYS_TEMP_0FD9D6796_E71F79 | | | | |
| 8 | HASH GROUP BY | | 1 | 26 | 3 (34)| 00:00:01 |
| 9 | TABLE ACCESS FULL | SYS_TEMP_0FD9D6795_E71F79 | 1 | 26 | 2 (0)| 00:00:01 |
| 10 | VIEW | | 1 | 32 | 2 (0)| 00:00:01 |
| 11 | TABLE ACCESS FULL | SYS_TEMP_0FD9D6796_E71F79 | 1 | 32 | 2 (0)| 00:00:01 |
--------------------------------------------------------------------------------------------------------
Statistics
----------------------------------------------------------
4 recursive calls
24 db block gets
17 consistent gets
3 physical reads
1596 redo size
819 bytes sent via SQL*Net to client
519 bytes received via SQL*Net from client
2 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)
8 rows processed

UNION ALL:

----------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
----------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 8 | 65 | 6 (67)| 00:00:01 |
| 1 | UNION-ALL | | | | | |
| 2 | HASH GROUP BY | | 5 | 50 | 3 (34)| 00:00:01 |
| 3 | TABLE ACCESS FULL| EMP | 14 | 140 | 2 (0)| 00:00:01 |
| 4 | HASH GROUP BY | | 3 | 15 | 3 (34)| 00:00:01 |
| 5 | TABLE ACCESS FULL| EMP | 14 | 70 | 2 (0)| 00:00:01 |
---------------------------------------------------------------------------- Statistics
----------------------------------------------------------
0 recursive calls
0 db block gets
4 consistent gets
0 physical reads
0 redo size
819 bytes sent via SQL*Net to client
519 bytes received via SQL*Net from client
2 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)
8 rows processed

和rollup不同的是,grouping sets的效率竟然比同等功能的union all语句低,这实现有点出乎意料。看来,也不可盲目应用Oracle提供的方案,至少,在本例中是如此。

GROUP BY的扩展的更多相关文章

  1. 报表开发之扩展GROUP BY

    在实际运用中.比方在数据仓库中,常常须要对数据进行多维分析.不仅须要标准分组的结果(相当于 GROUP BY),还须要不同维度的小计(简单 GROUP BY 中取部分列分组)和合计(不分组).从而 提 ...

  2. mysql5.5手册读书日记(3)

    <?php /* MySQL_5.5中文参考手册 587开始 与GROUP BY子句同时使用的函数和修改程序 12.10.1. GROUP BY(聚合)函数 12.10.2. GROUP BY修 ...

  3. oracle 高级分组

    oracle 高级分组 博客分类: 数据库基础 oraclesql  10.高级分组 本章目标: 对于增强的group by需要掌握: 1.使用rollup(也就是roll up累计的意思)操作产生s ...

  4. spark2.2 DataFrame的一些算子操作

    Spark Session中的DataFrame类似于一张关系型数据表.在关系型数据库中对单表或进行的查询操作,在DataFrame中都可以通过调用其API接口来实现.可以参考,Scala提供的Dat ...

  5. Spark-SQL之DataFrame操作大全

    Spark SQL中的DataFrame类似于一张关系型数据表.在关系型数据库中对单表或进行的查询操作,在DataFrame中都可以通过调用其API接口来实现.可以参考,Scala提供的DataFra ...

  6. python新手菜鸟之基础篇

    s=0 for i in range(1,101): s += i else: print(s) def main(n): '''打印菱形图形''' for i in range(n): print( ...

  7. Spark-SQL之DataFrame操作

    Spark SQL中的DataFrame类似于一张关系型数据表.在关系型数据库中对单表或进行的查询操作,在DataFrame中都可以通过调用其API接口来实现.可以参考,Scala提供的DataFra ...

  8. Linux系统编程【转】

    转自:https://blog.csdn.net/majiakun1/article/details/8558308 一.Linux系统编程概论 1.1 系统编程基石 syscall: libc:标准 ...

  9. [转]详解Oracle高级分组函数(ROLLUP, CUBE, GROUPING SETS)

    原文地址:http://blog.csdn.net/u014558001/article/details/42387929 本文主要讲解 ROLLUP, CUBE, GROUPING SETS的主要用 ...

随机推荐

  1. 多线程、委托、Invoke解决winform界面卡死的问题,并带开关

    一.知识点介绍 1,更新控件的内容,应该调用控件的Invoke方法. Invoke指: 在拥有控件的基础窗口句柄的线程上,用指定的参数列表执行指定委托.该方法接收一个委托类型和委托的参数,因此需要定义 ...

  2. 用SQL Server(T-SQL)获取连接字符串

    一般情况下,C# 连接SQL Server的字符串可以直接按照说明文档直接手动写出来,或者也可以参考大名鼎鼎的connectionstrings手动拼写 但是如果你已经连接到SQL Server也可以 ...

  3. hibernate不同版本获取获取sessionFactory

    hibernate4时,我们采用以下方式获取会话工厂: // 1. 解析我们在hibernate.cfg.xml中的配置 Configuration configuration = new Confi ...

  4. js ---- 时间格式

    Js获取当前日期时间及其它操作 var myDate = new Date(); myDate.getYear();        //获取当前年份(2位) myDate.getFullYear(); ...

  5. IOS第四天-新浪微博 -存储优化OAuth授权账号信息,下拉刷新,字典转模型

    *************application - (BOOL)application:(UIApplication *)application didFinishLaunchingWithOpti ...

  6. MySQL 数据库事务与复制

    好久没有写技术文章了,因为一直在思考 「后端分布式」这个系列到底怎么写才合适. 最近基本想清楚了,「后端分布式」包括「分布式存储」和 「分布式计算」两大类. 结合实际工作中碰到的问题,以寻找答案的方式 ...

  7. 介绍.NET 开发必备工具 .NET Portability Analyzer

    随着.NET的原来越开放,不仅仅是开源这么简单了,也意味着.NET程序员要关注越来越多的平台,涵盖.NET Mic Framework, Xamarin,Mono,.NET等等,从windows到li ...

  8. UI控件(UIScrollView)

    @implementation ViewController - (void)viewDidLoad { [super viewDidLoad]; //创建一个scrollview UIScrollV ...

  9. 利用gulp解决前后端分离的header/footer引入问题

    在我们进行前后端完全分离的时候,有一个问题一直是挺头疼的,那就是公共header和footer的引入.在传统利用后端渲染的情况下,我们可以把header.footer写成两个单独的模板,然后用后端语言 ...

  10. CSharpGL(6)在OpenGL中绘制UI元素

    CSharpGL(6)在OpenGL中绘制UI元素 2016-08-13 由于CSharpGL一直在更新,现在这个教程已经不适用最新的代码了.CSharpGL源码中包含10多个独立的Demo,更适合入 ...