Just a Hook

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 15889    Accepted Submission(s): 7897
Problem Description
In the game of DotA, Pudge’s meat hook is actually the most horrible thing for most of the heroes. The hook is made up of several consecutive metallic sticks which are of the same length.








Now Pudge wants to do some operations on the hook.



Let us number the consecutive metallic sticks of the hook from 1 to N. For each operation, Pudge can change the consecutive metallic sticks, numbered from X to Y, into cupreous sticks, silver sticks or golden sticks.

The total value of the hook is calculated as the sum of values of N metallic sticks. More precisely, the value for each kind of stick is calculated as follows:



For each cupreous stick, the value is 1.

For each silver stick, the value is 2.

For each golden stick, the value is 3.



Pudge wants to know the total value of the hook after performing the operations.

You may consider the original hook is made up of cupreous sticks.
 
Input
The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 10 cases.

For each case, the first line contains an integer N, 1<=N<=100,000, which is the number of the sticks of Pudge’s meat hook and the second line contains an integer Q, 0<=Q<=100,000, which is the number of the operations.

Next Q lines, each line contains three integers X, Y, 1<=X<=Y<=N, Z, 1<=Z<=3, which defines an operation: change the sticks numbered from X to Y into the metal kind Z, where Z=1 represents the cupreous kind, Z=2 represents the silver kind and Z=3 represents
the golden kind.
 
Output
For each case, print a number in a line representing the total value of the hook after the operations. Use the format in the example.
 
Sample Input
1
10
2
1 5 2
5 9 3
 
Sample Output
Case 1: The total value of the hook is 24.
 
Source

这题是线段树的成段更新,要用到lazy标记。也叫延迟标记。每次更新的时候不要更新究竟,仅仅是更新当前区段。然后标记下一层但不再更新。剩下的等下次查询时再更新。

//#define DEBUG
#include <stdio.h>
#define maxn 100002
#define lson l, mid, rt << 1
#define rson mid + 1, r, rt << 1 | 1 int tree[maxn << 2], lazy[maxn << 2]; void pushDown(int l, int r, int rt)
{
int mid = (l + r) >> 1;
tree[rt << 1] = (mid - l + 1) * lazy[rt];
tree[rt << 1 | 1] = (r - mid) * lazy[rt]; lazy[rt << 1] = lazy[rt << 1 | 1] = lazy[rt];
lazy[rt] = 0;
} void build(int l, int r, int rt)
{
lazy[rt] = 0;
if(l == r){
tree[rt] = 1; return;
} int mid = (l + r) >> 1;
build(lson);
build(rson); tree[rt] = tree[rt << 1] + tree[rt << 1 | 1];
} void update(int left, int right, int val, int l, int r, int rt)
{
if(left == l && right == r){
tree[rt] = val * (r - l + 1);
lazy[rt] = val; return;
} //include l == r if(lazy[rt]) pushDown(l, r, rt); int mid = (l + r) >> 1;
if(right <= mid) update(left, right, val, lson);
else if(left > mid) update(left, right, val, rson);
else{
update(left, mid, val, lson);
update(mid + 1, right, val, rson);
} tree[rt] = tree[rt << 1] + tree[rt << 1 | 1];
} int main()
{
#ifdef DEBUG
freopen("../stdin.txt", "r", stdin);
freopen("../stdout.txt", "w", stdout);
#endif int t, n, q, cas, a, b, c;
scanf("%d", &t);
for(cas = 1; cas <= t; ++cas){
scanf("%d%d", &n, &q); build(1, n, 1); while(q--){
scanf("%d%d%d", &a, &b, &c);
update(a, b, c, 1, n, 1);
} printf("Case %d: The total value of the hook is %d.\n", cas, tree[1]);
}
return 0;
}

HDU1698 Just a Hook 【线段树】+【成段更新】+【lazy标记】的更多相关文章

  1. HDU 1698 Just a Hook (线段树 成段更新 lazy-tag思想)

    题目链接 题意: n个挂钩,q次询问,每个挂钩可能的值为1 2 3,  初始值为1,每次询问 把从x到Y区间内的值改变为z.求最后的总的值. 分析:用val记录这一个区间的值,val == -1表示这 ...

  2. HDU1698_Just a Hook(线段树/成段更新)

    解题报告 题意: 原本区间1到n都是1,区间成段改变成一个值,求最后区间1到n的和. 思路: 线段树成段更新,区间去和. #include <iostream> #include < ...

  3. 【POJ】3468 A Simple Problem with Integers ——线段树 成段更新 懒惰标记

    A Simple Problem with Integers Time Limit:5000MS   Memory Limit:131072K Case Time Limit:2000MS Descr ...

  4. POJ 3468 线段树 成段更新 懒惰标记

    A Simple Problem with Integers Time Limit:5000MS   Memory Limit:131072K Case Time Limit:2000MS Descr ...

  5. HDU 1698 Just a Hook(线段树成段更新)

    Just a Hook Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Tota ...

  6. hdu698 Just a Hook 线段树-成段更新

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1698 很简单的一个线段树的题目,每次更新采用lazy思想,这里我采用了增加一个变量z,z不等于0时其绝 ...

  7. HDU-1698-Just a Hook-区间更新+线段树成段更新

    In the game of DotA, Pudge’s meat hook is actually the most horrible thing for most of the heroes. T ...

  8. ACM: Copying Data 线段树-成段更新-解题报告

    Copying Data Time Limit:2000MS Memory Limit:262144KB 64bit IO Format:%I64d & %I64u Description W ...

  9. Codeforces Round #149 (Div. 2) E. XOR on Segment (线段树成段更新+二进制)

    题目链接:http://codeforces.com/problemset/problem/242/E 给你n个数,m个操作,操作1是查询l到r之间的和,操作2是将l到r之间的每个数xor与x. 这题 ...

  10. POJ 2777 Count Color (线段树成段更新+二进制思维)

    题目链接:http://poj.org/problem?id=2777 题意是有L个单位长的画板,T种颜色,O个操作.画板初始化为颜色1.操作C讲l到r单位之间的颜色变为c,操作P查询l到r单位之间的 ...

随机推荐

  1. C与C艹的内存管理方式

    C 内存开辟出的空间一般可以分成:代码段,数据段(初始化的数据段, 为初始化的数据段BSS),堆,栈 代码段:保存程序文本,指令指针EIP就是指向代码段,可读可执行不可写 数据段:保存初始化的全局变量 ...

  2. 338 Counting Bits Bit位计数

    给定一个非负整数 num. 对于范围 0 ≤ i ≤ num 中的每个数字 i ,计算其二进制数中的1的数目并将它们作为数组返回.示例:比如给定 num = 5 ,应该返回 [0,1,1,2,1,2] ...

  3. [转]自适应网页设计(Responsive Web Design)

    本文转自:http://www.ruanyifeng.com/blog/2012/05/responsive_web_design.html 作者: 阮一峰 日期: 2012年5月 1日 随着3G的普 ...

  4. Java系列学习(八)-继承

    1.代码块 (1)在java中,使用 { } 括起来的代码 被称为代码块 (2)分类: A:局部代码块 [局部位置] [作用:用于限定 变量的生命周期] B:构造代码块 [在类中的成员位置,用{}括起 ...

  5. JS——缓慢动画封装

    在知道如何获取内嵌式和外链式的标签属性值之后,我们再次封装缓慢动画: 单个属性 <!DOCTYPE html> <html> <head lang="en&qu ...

  6. Django 更新字段

    Django在1.7以后的版本提供数据迁移命令,用来在修改模型中的字段,更新到数据库 1. python manager.py makemigrations 命令用来创建迁移文件版本的 2. pyth ...

  7. 数组的复制 --System.arraycopy()

    import java.util.Arrays; public class HellowWorld { public static void main(String[] argv ) { int[] ...

  8. zabbix实现163邮件报警

    Zabbix 邮件报警 电脑登录网易邮箱配置,把自己的授权码看一下,并写入配置文件 server端安装配置邮件服务器 [root@server ~]# yum -y install mailx dos ...

  9. function&箭头函数

    JS中this到底指向谁? function:谁调用指向谁 var id = '654321' var handler = { id: '123456', init: function() { con ...

  10. 多目标跟踪笔记一:Finding the Best Set of K Paths Through a Trellis With Application to Multitarget Tracking

    Abstract 本文提出一种寻找K最优路径的方法. k最优路径的定义:1.the sum of the metrics of all k paths in the set is minimized. ...