Problem Description

大学英语四级考试就要来临了,你是不是在紧张的复习?也许紧张得连短学期的ACM都没工夫练习了,反正我知道的Kiki和Cici都是如此。当然,作为在考场浸润了十几载的当代大学生,Kiki和Cici更懂得考前的放松,所谓“张弛有道”就是这个意思。这不,Kiki和Cici在每天晚上休息之前都要玩一会儿扑克牌以放松神经。“升级”?“双扣”?“红五”?还是“斗地主”?当然都不是!那多俗啊~
作为计算机学院的学生,Kiki和Cici打牌的时候可没忘记专业,她们打牌的规则是这样的:
1、  总共n张牌;
2、  双方轮流抓牌;
3、  每人每次抓牌的个数只能是2的幂次(即:1,2,4,8,16…)
4、  抓完牌,胜负结果也出来了:最后抓完牌的人为胜者;
假设Kiki和Cici都是足够聪明(其实不用假设,哪有不聪明的学生~),并且每次都是Kiki先抓牌,请问谁能赢呢?
当然,打牌无论谁赢都问题不大,重要的是马上到来的CET-4能有好的状态。
Good luck in CET-4 everybody!

Input

输入数据包含多个测试用例,每个测试用例占一行,包含一个整数n(1<=n<=1000)。

Output

如果Kiki能赢的话,请输出“Kiki”,否则请输出“Cici”,每个实例的输出占一行。

Sample Input

1
3

Sample Output

Kiki
Cici
解题思路:找找规律,先举几个栗子:
当n=1时,先手必赢;
当n=2时,先手必赢;
当n=3时,无论先手抓多少张牌,后手必赢;
当n=4时,只要先手抓1张牌,接下来就转化成n=3这个局面,即先手必赢;
当n=5时,只要先手抓2张牌,接下来就转化成n=3这个局面,即先手必赢;
当n=6时,①当先手抓1张牌时,接下来就转化成n=5这个局面,即后手必赢;②当先手抓2张牌时,后手可以一次性抓走剩下的4张牌,即后手必赢;③当先手抓4张牌时,后手同样可以一次性取完剩下的2张牌,即后手必赢;所以无论先手抓多少张牌,后手必赢;
当n=7时,只要先手抓走1张牌,接下来就转化成n=6这个局,即先手必赢;
......
再多举几个栗子,我们可以发现只要n是3的倍数,则后手必赢;反之,先手必赢,因此可以用以下简单代码水过:
 #include<bits/stdc++.h>
using namespace std;
int main()
{
int n;
while(cin>>n){
if(n%)cout<<"Kiki"<<endl;//不是3的倍数,先手必赢
else cout<<"Cici"<<endl;//是3的倍数,后手必赢
}
return ;
}

这题还可以用SG值解决,所谓的SG值就是记录当前状态是N是P的具体值,N-position表示必赢状态(其SG值不为0),P-position表示必输状态(其SG值为0)。下面介绍怎么求SG值:首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示不属于mex这个集合的最小非负整数。例如mex{0,1,2,4}=3、mex{2,3,5}=0、mex{}=0。

对于一个给定的有向无环图,定义关于图的每个顶点的Sprague-Grundy函数g如下:g(n)=mex{ g(m) | m是n的后继 },这里的g(n)即sg[n]

拿本题的栗子来讲:首先有sg[0]=0,f[]={1,2,4...};(f数组存放可以抓走扑克牌的张数,并且按升序存放)

当n=1时,先手可以抓走1-f{1}张牌,剩余{0}张,mex{sg[0]}={0},故sg[1]=1;

当n=2时,先手可以抓走2-f{1,2}张牌,剩余{1,0}张,mex{sg[1],sg[0]}={1,0},故sg[2]=2;

当n=3时,先手可以抓走3-f{1,2}张牌,剩余{2,1}张,mex{sg[2],sg[1]}={2,1},故sg[3]=0;

当n=4时,先手可以抓走4-f{1,2,4}张牌,剩余{3,2,0}张,mex{sg[3],sg[2],sg[0]}={0,2,0},故sg[4]=1;

当n=5时,先手可以抓走5-f{1,2,4}张牌,剩余{4,3,1}张,mex{sg[4],sg[3],sg[1]}={1,0,1},故sg[5]=2;

以此类推.....

   n  0 1 2 3 4 5 6 7 8 9....

sg[n] 0 1 2 0 1 2 0 1 2 ....

由上述实例我们就可以得到1~n的SG值的计算步骤,如下所示:
①、使用f数组保存可抓取的扑克牌张数。
②、然后使用vis数组来标记当前状态n的后继m状态。
③、最后模拟mex运算,也就是我们在集合mex中查找未被标记值的最小值,将其赋值给sg(n)。
④、不断的重复 ② - ③ 的步骤,即可完成计算1~n的SG值。

关于3种SG值计算方法(重点):

1、可选步数为1~m的连续整数,直接取模即可,SG(x) = x % (m+1);
2、可选步数为任意步,SG(x) = x;
3、可选步数为一系列不连续的数,用get_SG()计算 

此题就是选取第3种方法来计算SG值。

AC代码(非递归版本比较好理解):
 #include<bits/stdc++.h>
using namespace std;
const int maxn = ;
int n,f[],sg[maxn];
bool vis[maxn];
//f[]:每次抓牌的个数
//sg[]: 0~n的SG函数值
//vis[]:mex{}
void init(){//初始化
f[] = ;//下标从1开始
for(int i=;i<=;++i)f[i]=f[i-]*;//这里只需枚举到512即可,因为1024已经超过n=1000了
}
void get_SG(){
memset(sg,,sizeof(sg));
for(int i=;i<maxn;++i){
memset(vis,false,sizeof(vis));//每轮到当前i就重新初始化vis都为未访问状态,找出不属于这个集合的最小非负整数
for(int j=;j< && f[j]<=i;++j)//j<11要放在判断条件的前面,不然会出现错误即越界,因为数组长度只有10
vis[sg[i-f[j]]]=true;//i-f[j]为后继状态,vis[sg[i-f[j]]]收录mex集合
for(int j=;j<maxn;++j)//求没有出现在mex集合中的非负最小值
if(!vis[j]){sg[i]=j;break;}
}
}
int main()
{
init();
get_SG();
while(cin>>n){
if(sg[n])cout<<"Kiki"<<endl;//当sg[n]不为0时,即为N-position,此时先手必赢
else cout<<"Cici"<<endl;
}
return ;
}

再贴一下dfs版本代码:

 #include<bits/stdc++.h>
using namespace std;
const int maxn = ;
int n,f[],sg[maxn];
/*
SG值:一个点的SG值就是一个不等于它的后继点的SG的且大于等于零的最小整数。
同mex()函数。简单点来讲就是当前状态离最近一个必败点的距离。距离为0就是必败点
SG(x)=mex(S),S是x的后继状态的SG函数值集合,mex(S)表示不在S内的最小非负整数
SG值是P/N状态的具体化
*/
int mex(int x){//求该点的SG值(采用记忆化搜索)
if(sg[x]!=-)return sg[x];//搜索过了
bool vis[maxn];//vis数组要在此声明,不然会出错,因为这里是递归操作
memset(vis,false,sizeof(vis));
for(int i=;i<=;++i){
int tmp=x-f[i];
if(tmp<)break;//当差值小于0,直接退出
sg[tmp]=mex(tmp);//找sg[tmp]的后继值
vis[sg[tmp]]=true;//回退的时候标记后继sg值标记为true
}
for(int i=;i<=maxn;++i)//每次break退出时就取不属于mex集合的最小非负整数
if(!vis[i]){sg[x]=i;break;}
return sg[x];//返回x的最小非负整数
}
int main()
{
f[]=;
for(int i=;i<=;++i)
f[i]=f[i-]*;//只需枚举到512就行了,因为1024>1000没必要取到
memset(sg,-,sizeof(sg));//初始化为-1,记忆化搜索
while(cin>>n){
if(mex(n))cout<<"Kiki"<<endl;//当sg[n]不为0时即为N-position,先手必赢
else cout<<"Cici"<<endl;
}
return ;
}

更多详解参考一下这篇博文:博弈论 SG函数

题解报告:hdu 1847 Good Luck in CET-4 Everybody!(入门SG值)的更多相关文章

  1. HDU 1847 Good Luck in CET-4 Everybody! (博弈论sg)

    Good Luck in CET-4 Everybody! Problem Description 大学英语四级考试就要来临了,你是不是在紧张的复习?或许紧张得连短学期的ACM都没工夫练习了.反正我知 ...

  2. HDU.1847 Good Luck in CET-4 Everybody! ( 博弈论 SG分析)

    HDU.1847 Good Luck in CET-4 Everybody! ( 博弈论 SG分析) 题意分析 简单的SG分析 题意分析 简单的nim 博弈 博弈论快速入门 代码总览 //#inclu ...

  3. hdu 1847 Good Luck in CET-4 Everybody!(巴什博弈)

    Good Luck in CET-4 Everybody! HDU - 1847 大学英语四级考试就要来临了,你是不是在紧张的复习?也许紧张得连短学期的ACM都没工夫练习了,反正我知道的Kiki和Ci ...

  4. HDU 1847 Good Luck in CET-4 Everybody! (巴什博弈)

    题目链接:HDU 1847 Problem Description 大学英语四级考试就要来临了,你是不是在紧张的复习?也许紧张得连短学期的ACM都没工夫练习了,反正我知道的Kiki和Cici都是如此. ...

  5. hdu 1847 Good Luck in CET-4 Everybody!(sg)

    Good Luck in CET-4 Everybody! Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  6. HDU 1847 Good Luck in CET-4 Everybody!(规律,博弈)

    Good Luck in CET-4 Everybody! Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  7. HDU 1847 Good Luck in CET-4 Everybody!(找规律,或者简单SG函数)

    Good Luck in CET-4 Everybody! Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  8. HDU 1847 Good Luck in CET-4 Everybody!

    题解:巴什博弈,2^k+1=3N或2^k2=3N,所以3N为P-position,3N+r为N-position. #include <cstdio> int main(){ int n; ...

  9. HDU 1847 Good Luck in CET-4 Everybody!(找规律版巴什博奕)

    Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission( ...

随机推荐

  1. IE低版本和高级浏览器对文本输入事件兼容

    1 一般 使用oninput 事件可以监控文本输入事实触发 2 兼容需要使用onpropertychange . 3 兼容写法   var evenInput=DOM元素.oninput || DOM ...

  2. CodeForces 580B(尺取法)

    Kefa and Company 题意:Kefa这个人要去吃饭,他要邀请一些朋友一起去,他的每个朋友有两个属性金钱和关系度,要求邀请的人里边任意两个人之间的金钱差的绝对值不大于d:求被邀请的所有朋友的 ...

  3. 12. tie_breaker的使用原因和使用方法

    主要知识点: tie_breaker的使用原因和使用方法         一.tie_breaker的使用原因 dis_max,只是取分数最高的那个query的分数而已,完全不考虑其他query的分数 ...

  4. (蓝桥)2017C/C++A组第一题迷宫

    #include<iostream> #include<memory.h> using namespace std; char mi[10][10] ; int visited ...

  5. 第八节:pandas字符串

    Pandas提供了一组字符串函数,可以方便地对字符串数据进行操作.

  6. jdk8--collect总结

    https://blog.csdn.net/u014351782/article/details/53818430 一,collect是一个终端操作,它接收的参数是将流中的元素累积到汇总结果的各种方式 ...

  7. [置顶] Git学习总结(1)——Git使用详细教程

    一:Git是什么? Git是目前世界上最先进的分布式版本控制系统. 二:SVN与Git的最主要的区别? SVN是集中式版本控制系统,版本库是集中放在中央服务器的,而干活的时候,用的都是自己的电脑,所以 ...

  8. 清北学堂模拟赛d3t3 c

    分析:一开始拿到这道题真的是无从下手,暴力都很难打出来.但是基本的方向还是要有的,题目问的是方案数,dp不行就考虑数学方法.接下来比较难想.其实对于每一行或者每一列,我们任意打乱顺序其实对答案是没有影 ...

  9. hdu_1031_Design T-Shirt_201310291647

    Design T-Shirt Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) T ...

  10. Windows与VBox虚拟机共享目录的方法

    前言 安装完虚拟机,设置共享目录的时候碰到问题,网上搜索了一下,按照相关教程操作还是有问题,可能是写的不够清楚,于是按照自己的理解重写了一份,力求简单明了,理解轻松. 具体步骤 1.关闭虚拟机(如果未 ...