Python Imaging Library (PIL)是python下的图像处理模块,支持多种格式,并提供强大的图形与图像处理功能。

目前PIL的官方最新版本为1.1.7,支持的版本为python 2.5, 2.6, 2.7,并不支持python3,但有高手把它重新编译生成python3下可安装的exe了。这一非官方下载地址 http://www.lfd.uci.edu/~gohlke/pythonlibs/#pil

或者直接点下面:

       最近在做一件比较 evil 的事情——验证码识别,以此来学习一些新的技能。因为我是初学,对图像处理方面就不太了解了,欲要利吾事,必先利吾器,既然只是做一下实验,那用 Python 来作原型开发再好不过了。在 Python 中,比较常用的图像处理库是 PIL(Python Image Library),当前版本是 1.1.7 ,用起来非常方便。大家可以在 http://www.pythonware.com/products/pil/index.htm 下载和学习。
       在这里,我主要是介绍一下做图像识别时可能会用到的一些 PIL 提供的功能,比如图像增强、还有滤波之类的。最后给出使用 Python 做图像处理与识别的优势与劣势。
基本图像处理
       使用 PIL 之前需要 import Image 模块
       注意:在python3中,请使用from PIL import Image,不要使用import Image
 
import Image  #python2
from PIL import Image #python3
 
       然后你就可以使用Image.open(‘xx.bmp’) 来打开一个位图文件进行处理了。打开文件你不用担心格式,也不用了解格式,无论什么格式,都只要把文件名丢给 Image.open 就可以了。真所谓 bmp、jpg、png、gif……,一个都不能少。
 
img = Image.open(‘origin.png’)    # 得到一个图像的实例对象 img
图 1原图
       图像处理中,最基本的就是色彩空间的转换。一般而言,我们的图像都是 RGB 色彩空间的,但在图像识别当中,我们可能需要转换图像到灰度图、二值图等不同的色彩空间。 PIL 在这方面也提供了极完备的支持,我们可以:
new_img = img.convert(‘L’)
把 img 转换为 256 级灰度图像, convert() 是图像实例对象的一个方法,接受一个 mode 参数,用以指定一种色彩模式,mode 的取值可以是如下几种:
· 1 (1-bit pixels, black and white, stored with one pixel per byte)
· L (8-bit pixels, black and white)
· P (8-bit pixels, mapped to any other mode using a colour palette)
· RGB (3x8-bit pixels, true colour)
· RGBA (4x8-bit pixels, true colour with transparency mask)
· CMYK (4x8-bit pixels, colour separation)
· YCbCr (3x8-bit pixels, colour video format)
· I (32-bit signed integer pixels)
· F (32-bit floating point pixels)
怎么样,够丰富吧?其实如此之处,PIL 还有限制地支持以下几种比较少见的色彩模式:LA (L with alpha), RGBX (true colour with padding) and RGBa (true colour with premultiplied alpha)。
下面看一下 mode 为 ‘1’、’L’、’P’时转换出来的图像:
图 2 mode = '1'
图 3 mode = 'L'
图 4 mode = 'P'
convert() 函数也接受另一个隐含参数 matrix,转换矩阵 matrix 是一个长度为4 或者16 tuple。下例是一个转换 RGB 空间到 CIE XYZ 空间的例子:
    rgb2xyz = (
        0.412453, 0.357580, 0.180423, 0,
        0.212671, 0.715160, 0.072169, 0,
        0.019334, 0.119193, 0.950227, 0 )
    out = im.convert("RGB", rgb2xyz)
       除了完备的色彩空间转换能力外, PIL 还提供了resize()、rotate()等函数以获得改变大小,旋转图片等几何变换能力,在图像识别方面,图像实例提供了一个 histogram() 方法来计算直方图,非常方便实用。
图像增强
       图像增强通常用以图像识别之前的预处理,适当的图像增强能够使得识别过程达到事半功倍的效果。 PIL 在这方面提供了一个名为 ImageEnhance 的模块,提供了几种常见的图像增强方案:
import ImageEnhance
enhancer = ImageEnhance.Sharpness(image)
for i in range(8):
    factor = i / 4.0
    enhancer.enhance(factor).show("Sharpness %f" % factor)
上面的代码即是一个典型的使用 ImageEnhance 模块的例子。 Sharpness 是 ImageEnhance 模块的一个类,用以锐化图片。这一模块主要包含如下几个类:Color、Brightness、Contrast和Sharpness。它们都有一个共同的接口 .enhance(factor) ,接受一个浮点参数 factor,标示增强的比例。下面看看这四个类在不同的 factor 下的效果
图 5 使用Color 进行色彩增强,factor 取值 [0, 4],步进 0.5
图 6 用 Birghtness 增强亮度,factor取值[0,4],步进0.5
图 7用 Contrast 增强对比度, factor 取值 [0,4],步进0.5
图 8用 Sharpness 锐化图像,factor取值 [0,4],步进0.5
图像 Filter
       PIL 在 Filter 方面的支持是非常完备的,除常见的模糊、浮雕、轮廓、边缘增强和平滑,还有中值滤波、ModeFilter等,简直方便到可以做自己做一个Photoshop。这些 Filter 都放置在 ImageFilter 模块中,ImageFilter主要包括两部分内容,一是内置的 Filter,如 BLUR、DETAIL等,另一部分是 Filter 函数,可以指定不同的参数获得不同的效果。示例如下:
import ImageFilter
im1 = im.filter(ImageFilter.BLUR)
im2 = im.filter(ImageFilter.MinFilter(3))
im3 = im.filter(ImageFilter.MinFilter()) # same as MinFilter(3)
可以看到 ImageFilter 模块的使用非常简单,每一个 Filter 都只需要一行代码就可调用,开发效率非常高。
 
图 9使用 BLUR
图 10使用 CONTOUR
图 11使用 DETAIL
图 12使用 EMBOSS
图 13使用 EDGE_ENHANCE
图 14使用 EDGE_ENHANCE_MORE
图 15使用 FIND_EDGES
图 16使用 SHARPEN
图 17使用 SMOOTH
图 18使用 SMOOTH_MORE
       以上是几种内置的 Filter 的效果图,除此之外, ImageFilter 还提供了一些 Filter 函数,下面我们来看看这些可以通过参数改变行为的 Filter 的效果:
图 19使用 Kernel(),参数:size = (3, 3), kernel = (0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5)
图 20使用 MaxFilter,默认参数
图 21使用 MinFilter,默认参数
图 22使用 MedianFilter,默认参数
图 23使用 ModeFilter,参数 size = 3
图 24使用 RankFilter,参数 size = 3, rank = 3
小结
       到此,对 PIL 的介绍就告一段落了。总的来说,对于图像处理和识别,PIL 内建了强大的支持,从各种增强算法到 Filter ,都让人无法怀疑使用 Python 的可行性。 Python唯一的劣势在于执行时间过慢,特别是当实现一些计算量大的算法时候,需要极强的耐心。我曾用 Hough Transform(霍夫变换)来查找图像中的直线,纯 Python 的实现处理一个 340 * 100 的图片也要花去数秒时间(P4 3.0G + 1G memory)。但使用 PIL 无需关注图像格式、内建的图像增强算法和 Filter 算法,这些优点使 Python 适合用于构造原型和进行实验,在这两方面Python 比 matlab 更加方便。商业的图像识别产品开发,可以考虑已经被 boost accepted的来自 adobe 的开源 C++ 库 gil,可以兼顾执行性能和开发效率。
 
原文:http://blog.csdn.net/lanphaday/article/details/1852726

在python3下用PIL做图像处理的更多相关文章

  1. 在python3下使用OpenCV做离散余弦变换DCT及其反变换IDCT

    对图像处理经常用到DCT, Python下有很多带有DCT算法包, 这里使用OpenCV的DCT做变换, 并简单置0部分数据, 再查看反变换图像的效果. import numpy as np impo ...

  2. Windows下安装PIL进行图像处理

    过程一波三折 参考 http://blog.csdn.net/zxia1/article/details/8254113 http://stackoverflow.com/questions/3544 ...

  3. Windows下Python3.6安装PIL

    PIL是Python平台事实上的图像处理标准库,需要用到图片的需要导入该模块 一 安装pip https://pip.pypa.io/en/stable/installing/#id8 python ...

  4. Python 之 使用 PIL 库做图像处理

    http://www.cnblogs.com/way_testlife/archive/2011/04/17/2019013.html Python 之 使用 PIL 库做图像处理 1. 简介. 图像 ...

  5. [转]Python 之 使用 PIL 库做图像处理

    Python 之 使用 PIL 库做图像处理 1. 简介. 图像处理是一门应用非常广的技术,而拥有非常丰富第三方扩展库的 Python 当然不会错过这一门盛宴.PIL (Python Imaging ...

  6. python3下最全的wordcloud用法,附源代码及相关文件

    一.wordcloud是什么 词云,在一段文本中提取关键词进行扁平化的展示,更能吸引目标客户的眼球. 市面上有很多在线生成词云的工具,本文以Python中的第三方库wordcloud为例讲解如何自动生 ...

  7. 用Python做图像处理

    转自:http://blog.csdn.net/gzlaiyonghao/article/details/1852726  最近在做一件比较 evil 的事情——验证码识别,以此来学习一些新的技能.因 ...

  8. 论python3下“多态”与“继承”中坑

    1.背景: 近日切换到python3后,发现python3在多态处理上,有一些比较有意思的情况,特别记载,供大家参考... 以廖老师的python3教程中的animal 和dog的继承一节的代码做例子 ...

  9. 【转载】关于.NET下开源及商业图像处理(PSD)组件

    原创]关于.NET下开源及商业图像处理(PSD)组件   阅读目录 1 前言 2 .NET图像处理组件总结 3.相关资源网址        本博客所有文章分类的总目录:http://www.cnblo ...

随机推荐

  1. 那些移动端web踩过的坑

    原文链接:https://geniuspeng.github.io/2017/08/24/mobile-issues/ 扔了N久,还是捡回来了.好好弄一下吧.刚工作的时候挺忙的,后来不那么忙了,但是变 ...

  2. Objective-C中 ==、isEqual、isEqualToString判断字符串相等

    图片发自简书App 在判断一个字符串类型的变量是否与某字符时相等,你可能写下这样一行代码 if (activityType == @"0"){} //activityType是某一 ...

  3. js进阶 11-15 jquery过滤方法有哪些

    js进阶 11-15  jquery过滤方法有哪些 一.总结 一句话总结:jquery方法中的参数一般是什么:选择器.元素或 jQuery 对象. 1.jquery方法中的参数一般是什么? 选择器.元 ...

  4. js,jquery遍历数组,对象

    each的用法  1.数组中的each 复制代码 var arr = [ "one", "two", "three", "four ...

  5. Android图表和图形创建库:EazeGraph

    EazeGraph是一个 Android 库用于创建漂亮和花哨的图表.它具有易于使用和高度可定制的特点.当前支持四种不同的图表如下: Chart types Bar Chart Stacked Bar ...

  6. 使用Nexus搭建Maven仓库

    1.目的 通过建立自己的私服,能够减少中央仓库负荷.节省外网宽带.加速maven构建.自己部署构件等,从而高效的使用maven,nexus是当前流行的Maven仓库管理软件. 2.下载nexus 2. ...

  7. 基于 Android NDK 的学习之旅-----数据传输(引用数据类型)

    接着上篇文章继续讲.主要关于引用类型的数据传输,本文将介绍字符串传输和自定义对象的传输. 1.主要流程 1.  String 字符串传输 a)         上层定义一个native的方法,需要一个 ...

  8. 2015年工作中遇到的问题:71-80,Tomcat-Redis-浮点数-HTTPS

    71.Tomcat访问项目带了"项目名称".最简单的办法,是把这个项目部署到"root"目录,据boss所说,阿里的每一个项目,都单独放到1个Tomcat的ro ...

  9. 递归(c++)(转)

    1.什么是递归函数(recursive function) 递归函数即自调用函数,在函数体内部直接或间接地自己调用自己,即函数的嵌套调用是函数本身. 例如,下面的程序为求n!: long fact(i ...

  10. python 多线程拷贝单个文件

    # -*- coding: utf-8 -*- # @author: Tele # @Time : 2019/04/04 下午 12:25 # 多线程方式拷贝单个文件 import threading ...