Codeforces Round #337 (Div. 2) 610C Harmony Analysis(脑洞)
3 seconds
256 megabytes
standard input
standard output
The semester is already ending, so Danil made an effort and decided to visit a lesson on harmony analysis to know how does the professor look like, at least. Danil was very bored on this lesson until the teacher gave the group a simple task: find 4 vectors
in 4-dimensional space, such that every coordinate of every vector is 1 or - 1 and
any two vectors are orthogonal. Just as a reminder, two vectors in n-dimensional space are considered to be orthogonal if and only
if their scalar product is equal to zero, that is:

.
Danil quickly managed to come up with the solution for this problem and the teacher noticed that the problem can be solved in a more general case for 2k vectors
in 2k-dimensinoal
space. When Danil came home, he quickly came up with the solution for this problem. Can you cope with it?
The only line of the input contains a single integer k (0 ≤ k ≤ 9).
Print 2k lines
consisting of 2k characters
each. The j-th character of the i-th
line must be equal to ' * ' if the j-th
coordinate of the i-th vector is equal to - 1,
and must be equal to ' + ' if it's equal to + 1.
It's guaranteed that the answer always exists.
If there are many correct answers, print any.
2
++**
+*+*
++++
+**+
Consider all scalar products in example:
- Vectors 1 and 2: ( + 1)·( + 1) + ( + 1)·( - 1) + ( - 1)·( + 1) + ( - 1)·( - 1) = 0
- Vectors 1 and 3: ( + 1)·( + 1) + ( + 1)·( + 1) + ( - 1)·( + 1) + ( - 1)·( + 1) = 0
- Vectors 1 and 4: ( + 1)·( + 1) + ( + 1)·( - 1) + ( - 1)·( - 1) + ( - 1)·( + 1) = 0
- Vectors 2 and 3: ( + 1)·( + 1) + ( - 1)·( + 1) + ( + 1)·( + 1) + ( - 1)·( + 1) = 0
- Vectors 2 and 4: ( + 1)·( + 1) + ( - 1)·( - 1) + ( + 1)·( - 1) + ( - 1)·( + 1) = 0
- Vectors 3 and 4: ( + 1)·( + 1) + ( + 1)·( - 1) + ( + 1)·( - 1) + ( + 1)·( + 1) = 0
题目链接:点击打开链接
在2^k维空间中构造2^k个相互垂直的向量.
观察给出的数据, 无限脑洞...
AC代码:
#include "iostream"
#include "cstdio"
#include "cstring"
#include "algorithm"
#include "queue"
#include "stack"
#include "cmath"
#include "utility"
#include "map"
#include "set"
#include "vector"
#include "list"
#include "string"
#include "cstdlib"
using namespace std;
typedef long long ll;
const int MOD = 1e9 + 7;
const int INF = 0x3f3f3f3f;
int n;
int main(int argc, char const *argv[])
{
scanf("%d", &n);
n = 1 << n;
for(int i = 0; i < n; ++i) {
for(int j = 0; j < n; ++j)
printf("%c", __builtin_parity(i & j) ? '*' : '+');
printf("\n");
}
return 0;
}
列举四个位运算函数:
- int __builtin_ffs (unsigned int x)
返回x的最后一位1的是从后向前第几位,比方7368(1110011001000)返回4。 - int __builtin_clz (unsigned int x)
返回前导的0的个数。 - int __builtin_ctz (unsigned int x)
返回后面的0个个数,和__builtin_clz相对。 - int __builtin_popcount (unsigned int x)
返回二进制表示中1的个数。 - int __builtin_parity (unsigned int x)
返回x的奇偶校验位,也就是x的1的个数模2的结果。 - 摘自:点击打开链接
Codeforces Round #337 (Div. 2) 610C Harmony Analysis(脑洞)的更多相关文章
- Codeforces Round #337 (Div. 2) C. Harmony Analysis 构造
C. Harmony Analysis 题目连接: http://www.codeforces.com/contest/610/problem/C Description The semester i ...
- Codeforces Round #337 (Div. 2) C. Harmony Analysis 数学
C. Harmony Analysis The semester is already ending, so Danil made an effort and decided to visit a ...
- Codeforces Round #337 (Div. 2) C. Harmony Analysis
题目链接:http://codeforces.com/contest/610/problem/C 解题思路: 将后一个矩阵拆分为四个前一状态矩阵,其中三个与前一状态相同,剩下一个直接取反就行.还有很多 ...
- Codeforces Round #337 (Div. 2)
水 A - Pasha and Stick #include <bits/stdc++.h> using namespace std; typedef long long ll; cons ...
- Codeforces Round #337 (Div. 2) D. Vika and Segments 线段树扫描线
D. Vika and Segments 题目连接: http://www.codeforces.com/contest/610/problem/D Description Vika has an i ...
- Codeforces Round #337 (Div. 2) B. Vika and Squares 贪心
B. Vika and Squares 题目连接: http://www.codeforces.com/contest/610/problem/B Description Vika has n jar ...
- Codeforces Round #337 (Div. 2) A. Pasha and Stick 数学
A. Pasha and Stick 题目连接: http://www.codeforces.com/contest/610/problem/A Description Pasha has a woo ...
- Codeforces Round #337 (Div. 2) D. Vika and Segments (线段树+扫描线+离散化)
题目链接:http://codeforces.com/contest/610/problem/D 就是给你宽度为1的n个线段,然你求总共有多少单位的长度. 相当于用线段树求面积并,只不过宽为1,注意y ...
- Codeforces Round #337 (Div. 2) D. Vika and Segments 线段树 矩阵面积并
D. Vika and Segments Vika has an infinite sheet of squared paper. Initially all squares are whit ...
随机推荐
- django框架-DRF工程之权限功能
1.相对于flask,原生而言django,DRF做的则更加的合理化,想要给予用户相应的权限,首先需要在settings中进行配置 REST_FRAMEWORK = { 'DEAFAULT_PERMI ...
- Springboot - -web应用开发-Servlets, Filters, listeners
一.Web开发使用 Controller 基本上可以完成大部分需求,但是我们还可能会用到 Servlet. Filter. Listener等等 二.在spring boot中的三种实现方式 方法一: ...
- javaweb实现教师和教室管理系统 java jsp sqlserver
1,程序设计思想 (1)设计三个类,分别是工具类(用来写连接数据库的方法和异常类的方法).信息类(用来写存储信息的方法).实现类(用来写各种操作数据库的方法) (2)定义两个jsp文件,一个用来写入数 ...
- WPF 内存释放
原文:WPF 内存释放 在WPF 项目中引用到Transitionals 实现图片转场特效,发现每次图片转场内存都会增加,在每次转场后进行内存压缩 记录 解决方案如下: GC.Collect(); G ...
- HTTP——学习笔记(7)
HTTP中的认证机制 什么是认证机制?: 服务器需要知道客户端是谁. 怎样知道客户端身份?: 核对“登录者本人才知道的信息” 密码:只有本人才会知道的字符串信息 动态令牌:仅限本人持有的设备内显示的一 ...
- Openstack API 开发 快速入门
Openstack 做为流行的开源云计算平台,其最大特性是利用其提供的基础设施API,让我们可以以软件的方式来动态管理IAAS资源.Openstack 提供的api是流行的Rest API. ...
- What's Wrong With Hue Oozie Editor?
本文原文出处: http://blog.csdn.net/bluishglc/article/details/47021019 严禁不论什么形式的转载,否则将托付CSDN官方维护权益! First, ...
- [android]DES/3DES/AES加密方式
DES 支持8位加密解密,3Des支持24位,Aes支持32位.3Des是Des算法做三次.位数的单位是字节byte.不是bits. 3Des是把24位分成3组.第一组八位用来加密,第二组8位用于解密 ...
- 12、NIO、AIO、BIO一
1.NIO概述 什么是NIO:NIO是New I/O的简称,与旧式的基于流的I/O方式相对,从名字看,他表示新的一套JAVA I/O标准.它是在java1.4中被纳入到JDK中的,并具有以下特性: - ...
- Android体验高扩展艺术般的适配器
前言 本篇文章带大家体验一下一种具有扩展性的适配器写法. 这个适配器主要用于Item有多种的情况下.当然仅仅有一种类型也是适用的 实现 毫无疑问我们要继承BaseAdapter,重写getCount, ...