Codeforces Round #337 (Div. 2) 610C Harmony Analysis(脑洞)
3 seconds
256 megabytes
standard input
standard output
The semester is already ending, so Danil made an effort and decided to visit a lesson on harmony analysis to know how does the professor look like, at least. Danil was very bored on this lesson until the teacher gave the group a simple task: find 4 vectors
in 4-dimensional space, such that every coordinate of every vector is 1 or - 1 and
any two vectors are orthogonal. Just as a reminder, two vectors in n-dimensional space are considered to be orthogonal if and only
if their scalar product is equal to zero, that is:

.
Danil quickly managed to come up with the solution for this problem and the teacher noticed that the problem can be solved in a more general case for 2k vectors
in 2k-dimensinoal
space. When Danil came home, he quickly came up with the solution for this problem. Can you cope with it?
The only line of the input contains a single integer k (0 ≤ k ≤ 9).
Print 2k lines
consisting of 2k characters
each. The j-th character of the i-th
line must be equal to ' * ' if the j-th
coordinate of the i-th vector is equal to - 1,
and must be equal to ' + ' if it's equal to + 1.
It's guaranteed that the answer always exists.
If there are many correct answers, print any.
2
++**
+*+*
++++
+**+
Consider all scalar products in example:
- Vectors 1 and 2: ( + 1)·( + 1) + ( + 1)·( - 1) + ( - 1)·( + 1) + ( - 1)·( - 1) = 0
- Vectors 1 and 3: ( + 1)·( + 1) + ( + 1)·( + 1) + ( - 1)·( + 1) + ( - 1)·( + 1) = 0
- Vectors 1 and 4: ( + 1)·( + 1) + ( + 1)·( - 1) + ( - 1)·( - 1) + ( - 1)·( + 1) = 0
- Vectors 2 and 3: ( + 1)·( + 1) + ( - 1)·( + 1) + ( + 1)·( + 1) + ( - 1)·( + 1) = 0
- Vectors 2 and 4: ( + 1)·( + 1) + ( - 1)·( - 1) + ( + 1)·( - 1) + ( - 1)·( + 1) = 0
- Vectors 3 and 4: ( + 1)·( + 1) + ( + 1)·( - 1) + ( + 1)·( - 1) + ( + 1)·( + 1) = 0
题目链接:点击打开链接
在2^k维空间中构造2^k个相互垂直的向量.
观察给出的数据, 无限脑洞...
AC代码:
#include "iostream"
#include "cstdio"
#include "cstring"
#include "algorithm"
#include "queue"
#include "stack"
#include "cmath"
#include "utility"
#include "map"
#include "set"
#include "vector"
#include "list"
#include "string"
#include "cstdlib"
using namespace std;
typedef long long ll;
const int MOD = 1e9 + 7;
const int INF = 0x3f3f3f3f;
int n;
int main(int argc, char const *argv[])
{
scanf("%d", &n);
n = 1 << n;
for(int i = 0; i < n; ++i) {
for(int j = 0; j < n; ++j)
printf("%c", __builtin_parity(i & j) ? '*' : '+');
printf("\n");
}
return 0;
}
列举四个位运算函数:
- int __builtin_ffs (unsigned int x)
返回x的最后一位1的是从后向前第几位,比方7368(1110011001000)返回4。 - int __builtin_clz (unsigned int x)
返回前导的0的个数。 - int __builtin_ctz (unsigned int x)
返回后面的0个个数,和__builtin_clz相对。 - int __builtin_popcount (unsigned int x)
返回二进制表示中1的个数。 - int __builtin_parity (unsigned int x)
返回x的奇偶校验位,也就是x的1的个数模2的结果。 - 摘自:点击打开链接
Codeforces Round #337 (Div. 2) 610C Harmony Analysis(脑洞)的更多相关文章
- Codeforces Round #337 (Div. 2) C. Harmony Analysis 构造
C. Harmony Analysis 题目连接: http://www.codeforces.com/contest/610/problem/C Description The semester i ...
- Codeforces Round #337 (Div. 2) C. Harmony Analysis 数学
C. Harmony Analysis The semester is already ending, so Danil made an effort and decided to visit a ...
- Codeforces Round #337 (Div. 2) C. Harmony Analysis
题目链接:http://codeforces.com/contest/610/problem/C 解题思路: 将后一个矩阵拆分为四个前一状态矩阵,其中三个与前一状态相同,剩下一个直接取反就行.还有很多 ...
- Codeforces Round #337 (Div. 2)
水 A - Pasha and Stick #include <bits/stdc++.h> using namespace std; typedef long long ll; cons ...
- Codeforces Round #337 (Div. 2) D. Vika and Segments 线段树扫描线
D. Vika and Segments 题目连接: http://www.codeforces.com/contest/610/problem/D Description Vika has an i ...
- Codeforces Round #337 (Div. 2) B. Vika and Squares 贪心
B. Vika and Squares 题目连接: http://www.codeforces.com/contest/610/problem/B Description Vika has n jar ...
- Codeforces Round #337 (Div. 2) A. Pasha and Stick 数学
A. Pasha and Stick 题目连接: http://www.codeforces.com/contest/610/problem/A Description Pasha has a woo ...
- Codeforces Round #337 (Div. 2) D. Vika and Segments (线段树+扫描线+离散化)
题目链接:http://codeforces.com/contest/610/problem/D 就是给你宽度为1的n个线段,然你求总共有多少单位的长度. 相当于用线段树求面积并,只不过宽为1,注意y ...
- Codeforces Round #337 (Div. 2) D. Vika and Segments 线段树 矩阵面积并
D. Vika and Segments Vika has an infinite sheet of squared paper. Initially all squares are whit ...
随机推荐
- BZOJ 2555: SubString 后缀自动机_LCT
很水的一道题,就是有些细节没注意到. 比如说将调试信息误以为是最终结果而多调了20分钟QAQ ..... 我们注意到,每新加一个节点,改变的是该节点沿着 Parent 走一直走到根节点. 对应的,在 ...
- js对象追加到数组里
描述:将一个点击事件得到的对象追加到数组里 做法:全局声明一个数组,,在对象的点击事件里将得到的对象追加到数组 change(a){ arr.push(a) console.log(arr) var ...
- 影像服务——加载CESIUM自带的影像服务
1.加载arcgis数据——ArcGisMapServerImageryProvider var viewer = new Cesium.Viewer("cesiumDiv",{ ...
- PHP中使用DOM读取解析XML属性值一例
先看XML文件结构,与常见的文件略有不同,数据并不是用闭合标签保存的,而是直接保存在属性值中. <?xml version="1.0" encoding="utf- ...
- 紫书 例题 10-1 UVa 11582 (unsigned long long+模)
(1)这道题要用到 unsigned long long, 弄了我好久 这道题范围可以达到2的64次方-1, 而long long 最多到2的63次方-1, 而unsigned long long可以 ...
- [MST] Defining Asynchronous Processes Using Flow
In real life scenarios, many operations on our data are asynchronous. For example, because additiona ...
- zoj 1655 单源最短路 改为比例+最长路
http://acm.zju.edu.cn/onlinejudge/showProblem.do? problemId=655 没有理解清题意就硬套模板.所以WA了好几次. 解析看我的还有一篇http ...
- C++ 学习笔记(一些新特性总结3)
C++ 学习笔记(一些新特性总结3) public.protected 和 private 继承 public 继承时,基类的存取限制是不变的. class MyClass { public: // ...
- bzoj1296: [SCOI2009]粉刷匠(DP)
1296: [SCOI2009]粉刷匠 题目:传送门 题解: DP新姿势:dp套dp 我们先单独处理每个串,然后再放到全局更新: f[i][k]表示当前串枚举到第i个位置,用了k次机会 F[i][j] ...
- php中的页面跳转和重定向
php中的页面跳转和重定向 ThinkPHP中跳转和重定向的区别 跳转: 浏览器认为: 当前URL请求成功, 重新请求新的URL. 浏览器会 记录当前的URL 和 新的URL 在请求历史记录中. 回退 ...