C. Harmony Analysis
time limit per test

3 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

The semester is already ending, so Danil made an effort and decided to visit a lesson on harmony analysis to know how does the professor look like, at least. Danil was very bored on this lesson until the teacher gave the group a simple task: find 4 vectors
in 4-dimensional space, such that every coordinate of every vector is 1 or  - 1 and
any two vectors are orthogonal. Just as a reminder, two vectors in n-dimensional space are considered to be orthogonal if and only
if their scalar product is equal to zero, that is:


.

Danil quickly managed to come up with the solution for this problem and the teacher noticed that the problem can be solved in a more general case for 2k vectors
in 2k-dimensinoal
space. When Danil came home, he quickly came up with the solution for this problem. Can you cope with it?

Input

The only line of the input contains a single integer k (0 ≤ k ≤ 9).

Output

Print 2k lines
consisting of 2k characters
each. The j-th character of the i-th
line must be equal to ' * ' if the j-th
coordinate of the i-th vector is equal to  - 1,
and must be equal to ' + ' if it's equal to  + 1.
It's guaranteed that the answer always exists.

If there are many correct answers, print any.

Sample test(s)
input
2
output
++**
+*+*
++++
+**+
Note

Consider all scalar products in example:

  • Vectors 1 and 2: ( + 1)·( + 1) + ( + 1)·( - 1) + ( - 1)·( + 1) + ( - 1)·( - 1) = 0
  • Vectors 1 and 3: ( + 1)·( + 1) + ( + 1)·( + 1) + ( - 1)·( + 1) + ( - 1)·( + 1) = 0
  • Vectors 1 and 4: ( + 1)·( + 1) + ( + 1)·( - 1) + ( - 1)·( - 1) + ( - 1)·( + 1) = 0
  • Vectors 2 and 3: ( + 1)·( + 1) + ( - 1)·( + 1) + ( + 1)·( + 1) + ( - 1)·( + 1) = 0
  • Vectors 2 and 4: ( + 1)·( + 1) + ( - 1)·( - 1) + ( + 1)·( - 1) + ( - 1)·( + 1) = 0
  • Vectors 3 and 4: ( + 1)·( + 1) + ( + 1)·( - 1) + ( + 1)·( - 1) + ( + 1)·( + 1) = 0

题目链接:点击打开链接

在2^k维空间中构造2^k个相互垂直的向量.

观察给出的数据, 无限脑洞...

AC代码:

#include "iostream"
#include "cstdio"
#include "cstring"
#include "algorithm"
#include "queue"
#include "stack"
#include "cmath"
#include "utility"
#include "map"
#include "set"
#include "vector"
#include "list"
#include "string"
#include "cstdlib"
using namespace std;
typedef long long ll;
const int MOD = 1e9 + 7;
const int INF = 0x3f3f3f3f;
int n;
int main(int argc, char const *argv[])
{
scanf("%d", &n);
n = 1 << n;
for(int i = 0; i < n; ++i) {
for(int j = 0; j < n; ++j)
printf("%c", __builtin_parity(i & j) ? '*' : '+');
printf("\n");
}
return 0;
}

列举四个位运算函数:

  • int __builtin_ffs (unsigned int x)

    返回x的最后一位1的是从后向前第几位,比方7368(1110011001000)返回4。
  • int __builtin_clz (unsigned int x)

    返回前导的0的个数。

  • int __builtin_ctz (unsigned int x)

    返回后面的0个个数,和__builtin_clz相对。

  • int __builtin_popcount (unsigned int x)

    返回二进制表示中1的个数。

  • int __builtin_parity (unsigned int x)

    返回x的奇偶校验位,也就是x的1的个数模2的结果。
  • 摘自:点击打开链接

Codeforces Round #337 (Div. 2) 610C Harmony Analysis(脑洞)的更多相关文章

  1. Codeforces Round #337 (Div. 2) C. Harmony Analysis 构造

    C. Harmony Analysis 题目连接: http://www.codeforces.com/contest/610/problem/C Description The semester i ...

  2. Codeforces Round #337 (Div. 2) C. Harmony Analysis 数学

    C. Harmony Analysis   The semester is already ending, so Danil made an effort and decided to visit a ...

  3. Codeforces Round #337 (Div. 2) C. Harmony Analysis

    题目链接:http://codeforces.com/contest/610/problem/C 解题思路: 将后一个矩阵拆分为四个前一状态矩阵,其中三个与前一状态相同,剩下一个直接取反就行.还有很多 ...

  4. Codeforces Round #337 (Div. 2)

    水 A - Pasha and Stick #include <bits/stdc++.h> using namespace std; typedef long long ll; cons ...

  5. Codeforces Round #337 (Div. 2) D. Vika and Segments 线段树扫描线

    D. Vika and Segments 题目连接: http://www.codeforces.com/contest/610/problem/D Description Vika has an i ...

  6. Codeforces Round #337 (Div. 2) B. Vika and Squares 贪心

    B. Vika and Squares 题目连接: http://www.codeforces.com/contest/610/problem/B Description Vika has n jar ...

  7. Codeforces Round #337 (Div. 2) A. Pasha and Stick 数学

    A. Pasha and Stick 题目连接: http://www.codeforces.com/contest/610/problem/A Description Pasha has a woo ...

  8. Codeforces Round #337 (Div. 2) D. Vika and Segments (线段树+扫描线+离散化)

    题目链接:http://codeforces.com/contest/610/problem/D 就是给你宽度为1的n个线段,然你求总共有多少单位的长度. 相当于用线段树求面积并,只不过宽为1,注意y ...

  9. Codeforces Round #337 (Div. 2) D. Vika and Segments 线段树 矩阵面积并

    D. Vika and Segments     Vika has an infinite sheet of squared paper. Initially all squares are whit ...

随机推荐

  1. 拉格朗日插值&&快速插值

    拉格朗日插值 插值真惨 众所周知$k+1$个点可以确定一个$k$次多项式,那么插值就是通过点值还原多项式的过程. 设给出的$k+1$个点分别是$(x_0,y_0),(x_1,y_1),...,(x_k ...

  2. [SCOI2016]美味(可持久化线段树)

    可持久化trie树?好像和可持久化权值线段树差不多.. 如果这题没有那个\(x[i]\)这题就是一个裸的可持久化trie树. 仔细想想,多了这个\(x[i]\)之后有什么影响? 就是我们查询区间的时候 ...

  3. luogu P4018 Roy&October之取石子(博弈论)

    题意 题解 如果n是6的倍数,先手必败,否则先手必胜. 因为6*x一定不是pk 所以取得话会变成6*y+a的形式a=1,2,3,4,5: 然后a一定为质数.我们把a取完就又成为了6*x的形式. 又因为 ...

  4. [洛谷P2370]yyy2015c01的U盘

    题目大意:有n个文件,每个文件有一个大小和价值,有一个容量为s的U盘,要装这些文件.传输文件需要接口,一个大小为k的接口能传输的最大文件的大小为k.问最少要多大的接口,才能使传输的文件价值$\ge p ...

  5. 紫书 例题8-7 UVa 11572(滑动窗口)

    滑动窗口这个方法名字非常形象, 先是窗口的右指针尽量往右滑, 滑不动了就滑窗口的左指针, 滑到右指针又可以开始滑动为止. 这道题是要记录滑的过程中最大的窗口长度, 限制条件是窗口中不能出现重复的值. ...

  6. Object-C,NSURL,统一资源定位器

    今天晚上最后一个例子,写完休息娱乐一会. URL,统一资源定位器,可以定位网络上的一个资源. 没啥难的,还是对象.方法.API.和Java等语言没有啥区别. 不亲自一点点写一遍,印象不深,今后进一步深 ...

  7. CentOS6.3从光盘安装gcc(更改yum源)[转]

    转自:http://www.linuxidc.com/Linux/2012-11/73826.htm 一.加载光盘镜像 加载本地bin-DVD镜像文件到虚拟机系统,如图所示: 二.更改yum源 1.挂 ...

  8. hdu 4786 Fibonacci Tree 乱搞 智商题目 最小生成树

    首先计算图的联通情况,如果图本身不联通一定不会出现生成树,输出"NO",之后清空,加白边,看最多能加多少条,清空,加黑边,看能加多少条,即可得白边的最大值与最小值,之后判断Fibo ...

  9. 国庆 day 7 下午

    思路:见博客. #include<iostream> #include<cstdio> #include<cstring> #include<algorith ...

  10. Qt之pro配置多个子工程/子模块

    简述 进行Qt项目开发的时候,尤其是大型项目,经常涉及多工程/多模块问题,其主要思想还是模块化,目的是为了降低程序复杂度,使程序设计.调试和维护等操作简单化. 简述 配置 效果 多工程 多模块 更多参 ...