C. Harmony Analysis
time limit per test

3 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

The semester is already ending, so Danil made an effort and decided to visit a lesson on harmony analysis to know how does the professor look like, at least. Danil was very bored on this lesson until the teacher gave the group a simple task: find 4 vectors
in 4-dimensional space, such that every coordinate of every vector is 1 or  - 1 and
any two vectors are orthogonal. Just as a reminder, two vectors in n-dimensional space are considered to be orthogonal if and only
if their scalar product is equal to zero, that is:


.

Danil quickly managed to come up with the solution for this problem and the teacher noticed that the problem can be solved in a more general case for 2k vectors
in 2k-dimensinoal
space. When Danil came home, he quickly came up with the solution for this problem. Can you cope with it?

Input

The only line of the input contains a single integer k (0 ≤ k ≤ 9).

Output

Print 2k lines
consisting of 2k characters
each. The j-th character of the i-th
line must be equal to ' * ' if the j-th
coordinate of the i-th vector is equal to  - 1,
and must be equal to ' + ' if it's equal to  + 1.
It's guaranteed that the answer always exists.

If there are many correct answers, print any.

Sample test(s)
input
2
output
++**
+*+*
++++
+**+
Note

Consider all scalar products in example:

  • Vectors 1 and 2: ( + 1)·( + 1) + ( + 1)·( - 1) + ( - 1)·( + 1) + ( - 1)·( - 1) = 0
  • Vectors 1 and 3: ( + 1)·( + 1) + ( + 1)·( + 1) + ( - 1)·( + 1) + ( - 1)·( + 1) = 0
  • Vectors 1 and 4: ( + 1)·( + 1) + ( + 1)·( - 1) + ( - 1)·( - 1) + ( - 1)·( + 1) = 0
  • Vectors 2 and 3: ( + 1)·( + 1) + ( - 1)·( + 1) + ( + 1)·( + 1) + ( - 1)·( + 1) = 0
  • Vectors 2 and 4: ( + 1)·( + 1) + ( - 1)·( - 1) + ( + 1)·( - 1) + ( - 1)·( + 1) = 0
  • Vectors 3 and 4: ( + 1)·( + 1) + ( + 1)·( - 1) + ( + 1)·( - 1) + ( + 1)·( + 1) = 0

题目链接:点击打开链接

在2^k维空间中构造2^k个相互垂直的向量.

观察给出的数据, 无限脑洞...

AC代码:

#include "iostream"
#include "cstdio"
#include "cstring"
#include "algorithm"
#include "queue"
#include "stack"
#include "cmath"
#include "utility"
#include "map"
#include "set"
#include "vector"
#include "list"
#include "string"
#include "cstdlib"
using namespace std;
typedef long long ll;
const int MOD = 1e9 + 7;
const int INF = 0x3f3f3f3f;
int n;
int main(int argc, char const *argv[])
{
scanf("%d", &n);
n = 1 << n;
for(int i = 0; i < n; ++i) {
for(int j = 0; j < n; ++j)
printf("%c", __builtin_parity(i & j) ? '*' : '+');
printf("\n");
}
return 0;
}

列举四个位运算函数:

  • int __builtin_ffs (unsigned int x)

    返回x的最后一位1的是从后向前第几位,比方7368(1110011001000)返回4。
  • int __builtin_clz (unsigned int x)

    返回前导的0的个数。

  • int __builtin_ctz (unsigned int x)

    返回后面的0个个数,和__builtin_clz相对。

  • int __builtin_popcount (unsigned int x)

    返回二进制表示中1的个数。

  • int __builtin_parity (unsigned int x)

    返回x的奇偶校验位,也就是x的1的个数模2的结果。
  • 摘自:点击打开链接

Codeforces Round #337 (Div. 2) 610C Harmony Analysis(脑洞)的更多相关文章

  1. Codeforces Round #337 (Div. 2) C. Harmony Analysis 构造

    C. Harmony Analysis 题目连接: http://www.codeforces.com/contest/610/problem/C Description The semester i ...

  2. Codeforces Round #337 (Div. 2) C. Harmony Analysis 数学

    C. Harmony Analysis   The semester is already ending, so Danil made an effort and decided to visit a ...

  3. Codeforces Round #337 (Div. 2) C. Harmony Analysis

    题目链接:http://codeforces.com/contest/610/problem/C 解题思路: 将后一个矩阵拆分为四个前一状态矩阵,其中三个与前一状态相同,剩下一个直接取反就行.还有很多 ...

  4. Codeforces Round #337 (Div. 2)

    水 A - Pasha and Stick #include <bits/stdc++.h> using namespace std; typedef long long ll; cons ...

  5. Codeforces Round #337 (Div. 2) D. Vika and Segments 线段树扫描线

    D. Vika and Segments 题目连接: http://www.codeforces.com/contest/610/problem/D Description Vika has an i ...

  6. Codeforces Round #337 (Div. 2) B. Vika and Squares 贪心

    B. Vika and Squares 题目连接: http://www.codeforces.com/contest/610/problem/B Description Vika has n jar ...

  7. Codeforces Round #337 (Div. 2) A. Pasha and Stick 数学

    A. Pasha and Stick 题目连接: http://www.codeforces.com/contest/610/problem/A Description Pasha has a woo ...

  8. Codeforces Round #337 (Div. 2) D. Vika and Segments (线段树+扫描线+离散化)

    题目链接:http://codeforces.com/contest/610/problem/D 就是给你宽度为1的n个线段,然你求总共有多少单位的长度. 相当于用线段树求面积并,只不过宽为1,注意y ...

  9. Codeforces Round #337 (Div. 2) D. Vika and Segments 线段树 矩阵面积并

    D. Vika and Segments     Vika has an infinite sheet of squared paper. Initially all squares are whit ...

随机推荐

  1. BZOJ 2555: SubString 后缀自动机_LCT

    很水的一道题,就是有些细节没注意到. 比如说将调试信息误以为是最终结果而多调了20分钟QAQ ..... 我们注意到,每新加一个节点,改变的是该节点沿着 Parent 走一直走到根节点. 对应的,在 ...

  2. js对象追加到数组里

    描述:将一个点击事件得到的对象追加到数组里 做法:全局声明一个数组,,在对象的点击事件里将得到的对象追加到数组 change(a){ arr.push(a) console.log(arr) var ...

  3. 影像服务——加载CESIUM自带的影像服务

    1.加载arcgis数据——ArcGisMapServerImageryProvider var viewer = new Cesium.Viewer("cesiumDiv",{ ...

  4. PHP中使用DOM读取解析XML属性值一例

    先看XML文件结构,与常见的文件略有不同,数据并不是用闭合标签保存的,而是直接保存在属性值中. <?xml version="1.0" encoding="utf- ...

  5. 紫书 例题 10-1 UVa 11582 (unsigned long long+模)

    (1)这道题要用到 unsigned long long, 弄了我好久 这道题范围可以达到2的64次方-1, 而long long 最多到2的63次方-1, 而unsigned long long可以 ...

  6. [MST] Defining Asynchronous Processes Using Flow

    In real life scenarios, many operations on our data are asynchronous. For example, because additiona ...

  7. zoj 1655 单源最短路 改为比例+最长路

    http://acm.zju.edu.cn/onlinejudge/showProblem.do? problemId=655 没有理解清题意就硬套模板.所以WA了好几次. 解析看我的还有一篇http ...

  8. C++ 学习笔记(一些新特性总结3)

    C++ 学习笔记(一些新特性总结3) public.protected 和 private 继承 public 继承时,基类的存取限制是不变的. class MyClass { public: // ...

  9. bzoj1296: [SCOI2009]粉刷匠(DP)

    1296: [SCOI2009]粉刷匠 题目:传送门 题解: DP新姿势:dp套dp 我们先单独处理每个串,然后再放到全局更新: f[i][k]表示当前串枚举到第i个位置,用了k次机会 F[i][j] ...

  10. php中的页面跳转和重定向

    php中的页面跳转和重定向 ThinkPHP中跳转和重定向的区别 跳转: 浏览器认为: 当前URL请求成功, 重新请求新的URL. 浏览器会 记录当前的URL 和 新的URL 在请求历史记录中. 回退 ...