在Fedora18上配置个人的Hadoop开发环境
在Fedora18上配置个人的Hadoop开发环境
1. 背景
文章中讲述了类似于“personalcondor”的一种“personal hadoop” 配置法。基本的目的是配置文件和日志文件有一个单一的源,
能够用软连接到开发生成的二进制库。这样就能够在所生成二进制库更新的时候维护其它的数据和配置项。
2. 用户案例
1. 比較不用改变现有系统中安装软件的情况下,在本地的沙盒环境中做測试
2. 单一源的配置文件盒日志文件
3. 參考
网页:
http://wiki.apache.org/hadoop/HowToSetupYourDevelopmentEnvironment
http://vichargrave.com/create-a-hadoop-build-and-development-environment-for-hadoop/
http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-single-node-cluster/
http://wiki.apache.org/hadoop/
http://docs.hortonworks.com/CURRENT/index.htm#Appendix/Configuring_Ports/HDFS_Ports.htm
书籍:
Hadoop “TheDefinitive Guide”
4. 免责声明
1. 当前是在使用存在maven依赖的非本地开发步骤,具体信息在本地的包中,请查看:https://fedoraproject.org/wiki/Features/Hadoop
2 . 单节点环境搭建步骤在下边列出
5. 先决条件
1. 配置没有password的ssh
yum install openssh openssh-clients openssh-server
# generate a public/private key, if you don't already have one
ssh-keygen -t dsa -P '' -f ~/.ssh/id_dsa
cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys
chmod 600 ~/.ssh/*
# testing ssh:
ps -ef | grep sshd # verify sshd is running
ssh localhost # accept the certification when prompted
sudo passwd root # Make sure the root has a password
2. 安装其他依赖包
yum install cmake git subversion dh-make ant autoconf automake sharutils libtool asciidoc xmlto curl protobuf-compiler gcc-c++
3. 安装java和开发环境
yum install java-1.7.0-openjdk java-1.7.0-openjdk-devel java-1.7.0-openjdk-javadoc *maven*
改动.bashrc文件信息
export JVM_ARGS="-Xmx1024m -XX:MaxPermSize=512m"
export MAVEN_OPTS="-Xmx1024m -XX:MaxPermSize=512m"
注意:以上的配置用在F18的OpenJDK7上。能够通过下面命令来測试当前环境配置是否成功。
mvn install -Dmaven.test.failure.ignore=true
6. 搭建“personal-hadoop“
1. 下载编译hadoop
git clone git://git.apache.org/hadoop-common.git
cd hadoop-common
git checkout -b branch-2.0.4-alpha origin/branch-2.0.4-alpha
mvn clean package -Pdist -DskipTests
2. 创建沙盒环境
在这个配置中我们默认到/home/tstclair
cd ~
mkdir personal-hadoop
cd personal-hadoop
mkdir -p conf data name logs/yarn
ln -sf <your-git-loc>/hadoop-dist/target/hadoop-2.0.4-alpha home
3. 重写你的环境变量
附加下面信息到家文件夹的.bashrc文件里
# Hadoop env override:
export HADOOP_BASE_DIR=${HOME}/personal-hadoop
export HADOOP_LOG_DIR=${HOME}/personal-hadoop/logs
export HADOOP_PID_DIR=${HADOOP_BASE_DIR}
export HADOOP_CONF_DIR=${HOME}/personal-hadoop/conf
export HADOOP_COMMON_HOME=${HOME}/personal-hadoop/home
export HADOOP_HDFS_HOME=${HADOOP_COMMON_HOME}
export HADOOP_MAPRED_HOME=${HADOOP_COMMON_HOME}
# Yarn env override:
export HADOOP_YARN_HOME=${HADOOP_COMMON_HOME}
export YARN_LOG_DIR=${HADOOP_LOG_DIR}/yarn
#classpath override to search hadoop loc
export CLASSPATH=/usr/share/java/:${HADOOP_COMMON_HOME}/share
#Finally update your PATH
export PATH=${HADOOP_COMMON_HOME}/bin:${HADOOP_COMMON_HOME}/sbin:${HADOOP_COMMON_HOME}/libexec:${PATH}
4. 验证以上步骤
source ~/.bashrc
which hadoop # verify it should be ${HOME}/personal-hadoop/home/bin
hadoop -help # verify classpath is correct.
5. 创建初始化单一源的配置文件
拷贝默认的配置文件
cp ${HADOOP_COMMON_HOME}/etc/hadoop/* ${HADOOP_BASE_DIR}/conf
更新你的hdfs-site.xml文件:
<?
xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!--
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. See accompanying LICENSE file.
-->
<!-- Override tstclair with your home directory -->
<configuration>
<property>
<name>fs.default.name</name>
<value>hdfs://localhost/</value>
</property>
<property>
<name>dfs.name.dir</name>
<value>file:///home/tstclair/personal-hadoop/name</value>
</property>
<property>
<name>dfs.http.address</name>
<value>0.0.0.0:50070</value>
</property>
<property>
<name>dfs.data.dir</name>
<value>file:///home/tstclair/personal-hadoop/data</value>
</property>
<property>
<name>dfs.datanode.address</name>
<value>0.0.0.0:50010</value>
</property>
<property>
<name>dfs.datanode.http.address</name>
<value>0.0.0.0:50075</value>
</property>
<property>
<name>dfs.datanode.ipc.address</name>
<value>0.0.0.0:50020</value>
</property>
</configuratio
更新mapred-site.xml文件
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!--
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. See accompanying LICENSE file.
-->
<!-- Update or append these vars -->
<configuration>
<property>
<name>mapreduce.cluster.temp.dir</name>
<value>
</value>
<description>No description</description>
<final>true</final>
</property>
<property>
<name>mapreduce.cluster.local.dir</name>
<value>
</value>
<description>No description</description>
<final>true</final>
</property>
</configuration>
最后更新yarn-site.xml文件
<?xml version="1.0"?
>
<!--
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. See accompanying LICENSE file.
-->
<configuration>
<!-- Site specific YARN configuration properties -->
<property>
<name>yarn.resourcemanager.resource-tracker.address</name>
<value>localhost:8031</value>
<description>host is the hostname of the resource manager and
port is the port on which the NodeManagers contact the Resource Manager.
</description>
</property>
<property>
<name>yarn.resourcemanager.scheduler.address</name>
<value>localhost:8030</value>
<description>host is the hostname of the resourcemanager and port is the port
on which the Applications in the cluster talk to the Resource Manager.
</description>
</property>
<property>
<name>yarn.resourcemanager.scheduler.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler</value>
<description>In case you do not want to use the default scheduler</description>
</property>
<property>
<name>yarn.resourcemanager.address</name>
<value>localhost:8032</value>
<description>the host is the hostname of the ResourceManager and the port is the port on
which the clients can talk to the Resource Manager. </description>
</property>
<property>
<name>yarn.nodemanager.local-dirs</name>
<value>
</value>
<description>the local directories used by the nodemanager</description>
</property>
<property>
<name>yarn.nodemanager.address</name>
<value>localhost:8034</value>
<description>the nodemanagers bind to this port</description>
</property>
<property>
<name>yarn.nodemanager.resource.memory-mb</name>
<value>10240</value>
<description>the amount of memory on the NodeManager in GB</description>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce.shuffle</value>
<description>shuffle service that needs to be set for Map Reduce to run </description>
</property>
</configuration>
7. 开启单节点的Hadoop集群
格式化namenode
hadoop namenode -format
#verify output is correct.
开启hdfs:
start-dfs.sh
打开浏览器http://localhost:50070。查看是否有一个节点已经被启动
接下来开启yarn
start-yarn.sh
通过查看日志文件来验证是否正常启动
最后通过执行MapReduce任务来检查Hadoop是否正常执行
cd ${HADOOP_COMMON_HOME}/share/hadoop/mapreduce
hadoop jar hadoop-mapreduce-example-2.0.4-alpha.jar randomwriter out
文章出处:http://timothysc.github.io/blog/2013/04/22/personalhadoop/
在Fedora18上配置个人的Hadoop开发环境的更多相关文章
- react-native —— 在Mac上配置React Native Android开发环境排坑总结
配置React Native Android开发环境总结 1.卸载Android Studio,在终端(terminal)执行以下命令: rm -Rf /Applications/Android\ S ...
- MAC上配置asp.net core开发环境
安装.NET Core sdk https://www.microsoft.com/net/core#macos 安装VS Code https://code.visualstudio.com/Dow ...
- Mac上配置maven+eclipse+spark开发环境
1.安装jdk 2.下载scala-ide.官网:http://scala-ide.org 3.安装maven 4.在eclipse中,配置maven的安装了路径.偏好设置--->maven-- ...
- 在ubuntu下使用Eclipse搭建Hadoop开发环境
一.安装准备1.JDK版本:jdk1.7.0(jdk-7-linux-i586.tar.gz)2.hadoop版本:hadoop-1.1.1(hadoop-1.1.1.tar.gz)3.eclipse ...
- Mac OS X上搭建伪分布式CDH版本Hadoop开发环境
最近在研究数据挖掘相关的东西,在本地 Mac 环境搭建了一套伪分布式的 hadoop 开发环境,采用CDH发行版本,省时省心. 参考来源 How-to: Install CDH on Mac OSX ...
- Windows 8.0上Eclipse 4.4.0 配置CentOS 6.5 上的Hadoop2.2.0开发环境
原文地址:http://www.linuxidc.com/Linux/2014-11/109200.htm 图文详解Windows 8.0上Eclipse 4.4.0 配置CentOS 6.5 上的H ...
- Hadoop开发环境简介(转)
1.Hadoop开发环境简介 1.1 Hadoop集群简介 Java版本:jdk-6u31-linux-i586.bin Linux系统:CentOS6.0 Hadoop版本:hadoop-1.0.0 ...
- Hadoop开发环境搭建
hadoop是一个分布式系统基础架构,由Apache基金会所开发. 用户可以在不了解分布式底层细节的情况下,开发分布式程序.充分利用集群的威力高速运算和存储. Hadoop实现了一个分布式文件系统 ...
- 基于Eclipse搭建hadoop开发环境
一.基础环境准备 1.Eclipse 下载地址:http://pan.baidu.com/s/1slArxAP 2.JDK1.8 下载地址:http://pan.baidu.com/s/1i5iNy ...
随机推荐
- mysql 将时间转换成时间戳
select UNIX_TIMESTAMP(addtime/*date_column*/) from tablename 输出:1548658912 数据库原格式:2019-01-28 15:01:2 ...
- @GetMapping、@PostMapping、@PutMapping、@DeleteMapping、@PatchMapping
@GetMapping.@PostMapping.@PutMapping.@DeleteMapping.@PatchMapping @GetMapping是一个组合注解,是@RequestMappi ...
- 完毕乔布斯的梦想:一个免费wifi共享的乌托邦
早在2007年推出iPhone时,乔布斯就提出这种如果:商业区与居民区的wifi路由器全民开放,实现与路人共享网络之便.能够想象,那算是一个wifi共享的乌托邦. 数年过去了,乔布斯的梦想依然没能全然 ...
- HDU 4081 Qin Shi Huang's National Road System 最小生成树
点击打开链接题目链接 Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others) Memory Lim ...
- nyoj-673-悟空的难题(数组标记)
悟空的难题 时间限制:1000 ms | 内存限制:65535 KB 难度:2 描写叙述 自从悟空当上了齐天大圣.花果山上的猴子猴孙们便也能够尝到天上的各种仙果神酒,所以猴子猴孙们的体质也得到了非 ...
- [Android] 使用Matrix矩阵类对图像进行缩放、旋转、对照度、亮度处理
前一篇文章讲述了Android拍照.截图.保存并显示在ImageView控件中,该篇文章继续讲述Android图像处理技术,主要操作包含:通过打开相冊里的图片,使用Matrix对图像进行缩放. ...
- 树莓派学习路程No.2 GPIO功能初识 wiringPi安装
WiringPi是应用于树莓派平台的GPIO控制库函数,WiringPi遵守GUN Lv3.wiringPi使用C或者C++开发并且可以被其他语言包转,例如python.ruby或者PHP等.Wiri ...
- hdu-2871
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #i ...
- Most common words
To find the most common words, we can apply the DSU pattern; most_common takes a histogram and retur ...
- python import windows文件路经
import sys sys.path.append("E:\\python\\workspacepython\\PY001\\src\\testpy01") import str ...