在Fedora18上配置个人的Hadoop开发环境
在Fedora18上配置个人的Hadoop开发环境
1. 背景
文章中讲述了类似于“personalcondor”的一种“personal hadoop” 配置法。基本的目的是配置文件和日志文件有一个单一的源,
能够用软连接到开发生成的二进制库。这样就能够在所生成二进制库更新的时候维护其它的数据和配置项。
2. 用户案例
1. 比較不用改变现有系统中安装软件的情况下,在本地的沙盒环境中做測试
2. 单一源的配置文件盒日志文件
3. 參考
网页:
http://wiki.apache.org/hadoop/HowToSetupYourDevelopmentEnvironment
http://vichargrave.com/create-a-hadoop-build-and-development-environment-for-hadoop/
http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-single-node-cluster/
http://wiki.apache.org/hadoop/
http://docs.hortonworks.com/CURRENT/index.htm#Appendix/Configuring_Ports/HDFS_Ports.htm
书籍:
Hadoop “TheDefinitive Guide”
4. 免责声明
1. 当前是在使用存在maven依赖的非本地开发步骤,具体信息在本地的包中,请查看:https://fedoraproject.org/wiki/Features/Hadoop
2 . 单节点环境搭建步骤在下边列出
5. 先决条件
1. 配置没有password的ssh
yum install openssh openssh-clients openssh-server
# generate a public/private key, if you don't already have one
ssh-keygen -t dsa -P '' -f ~/.ssh/id_dsa
cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys
chmod 600 ~/.ssh/*
# testing ssh:
ps -ef | grep sshd # verify sshd is running
ssh localhost # accept the certification when prompted
sudo passwd root # Make sure the root has a password
2. 安装其他依赖包
yum install cmake git subversion dh-make ant autoconf automake sharutils libtool asciidoc xmlto curl protobuf-compiler gcc-c++3. 安装java和开发环境
yum install java-1.7.0-openjdk java-1.7.0-openjdk-devel java-1.7.0-openjdk-javadoc *maven*改动.bashrc文件信息
export JVM_ARGS="-Xmx1024m -XX:MaxPermSize=512m"export MAVEN_OPTS="-Xmx1024m -XX:MaxPermSize=512m"注意:以上的配置用在F18的OpenJDK7上。能够通过下面命令来測试当前环境配置是否成功。
mvn install -Dmaven.test.failure.ignore=true
6. 搭建“personal-hadoop“
1. 下载编译hadoop
git clone git://git.apache.org/hadoop-common.gitcd hadoop-commongit checkout -b branch-2.0.4-alpha origin/branch-2.0.4-alphamvn clean package -Pdist -DskipTests2. 创建沙盒环境
在这个配置中我们默认到/home/tstclair
cd ~mkdir personal-hadoopcd personal-hadoopmkdir -p conf data name logs/yarnln -sf <your-git-loc>/hadoop-dist/target/hadoop-2.0.4-alpha home3. 重写你的环境变量
附加下面信息到家文件夹的.bashrc文件里
# Hadoop env override:
export HADOOP_BASE_DIR=${HOME}/personal-hadoop
export HADOOP_LOG_DIR=${HOME}/personal-hadoop/logs
export HADOOP_PID_DIR=${HADOOP_BASE_DIR}
export HADOOP_CONF_DIR=${HOME}/personal-hadoop/conf
export HADOOP_COMMON_HOME=${HOME}/personal-hadoop/home
export HADOOP_HDFS_HOME=${HADOOP_COMMON_HOME}
export HADOOP_MAPRED_HOME=${HADOOP_COMMON_HOME}
# Yarn env override:
export HADOOP_YARN_HOME=${HADOOP_COMMON_HOME}
export YARN_LOG_DIR=${HADOOP_LOG_DIR}/yarn
#classpath override to search hadoop loc
export CLASSPATH=/usr/share/java/:${HADOOP_COMMON_HOME}/share
#Finally update your PATH
export PATH=${HADOOP_COMMON_HOME}/bin:${HADOOP_COMMON_HOME}/sbin:${HADOOP_COMMON_HOME}/libexec:${PATH}
4. 验证以上步骤
source ~/.bashrcwhich hadoop # verify it should be ${HOME}/personal-hadoop/home/binhadoop -help # verify classpath is correct.5. 创建初始化单一源的配置文件
拷贝默认的配置文件
cp ${HADOOP_COMMON_HOME}/etc/hadoop/* ${HADOOP_BASE_DIR}/conf更新你的hdfs-site.xml文件:
<?
xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!--
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. See accompanying LICENSE file.
-->
<!-- Override tstclair with your home directory -->
<configuration>
<property>
<name>fs.default.name</name>
<value>hdfs://localhost/</value>
</property>
<property>
<name>dfs.name.dir</name>
<value>file:///home/tstclair/personal-hadoop/name</value>
</property>
<property>
<name>dfs.http.address</name>
<value>0.0.0.0:50070</value>
</property>
<property>
<name>dfs.data.dir</name>
<value>file:///home/tstclair/personal-hadoop/data</value>
</property>
<property>
<name>dfs.datanode.address</name>
<value>0.0.0.0:50010</value>
</property>
<property>
<name>dfs.datanode.http.address</name>
<value>0.0.0.0:50075</value>
</property>
<property>
<name>dfs.datanode.ipc.address</name>
<value>0.0.0.0:50020</value>
</property>
</configuratio
更新mapred-site.xml文件
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!--
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. See accompanying LICENSE file.
-->
<!-- Update or append these vars -->
<configuration>
<property>
<name>mapreduce.cluster.temp.dir</name>
<value>
</value>
<description>No description</description>
<final>true</final>
</property>
<property>
<name>mapreduce.cluster.local.dir</name>
<value>
</value>
<description>No description</description>
<final>true</final>
</property>
</configuration>
最后更新yarn-site.xml文件
<?xml version="1.0"?
>
<!--
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. See accompanying LICENSE file.
-->
<configuration>
<!-- Site specific YARN configuration properties -->
<property>
<name>yarn.resourcemanager.resource-tracker.address</name>
<value>localhost:8031</value>
<description>host is the hostname of the resource manager and
port is the port on which the NodeManagers contact the Resource Manager.
</description>
</property>
<property>
<name>yarn.resourcemanager.scheduler.address</name>
<value>localhost:8030</value>
<description>host is the hostname of the resourcemanager and port is the port
on which the Applications in the cluster talk to the Resource Manager.
</description>
</property>
<property>
<name>yarn.resourcemanager.scheduler.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler</value>
<description>In case you do not want to use the default scheduler</description>
</property>
<property>
<name>yarn.resourcemanager.address</name>
<value>localhost:8032</value>
<description>the host is the hostname of the ResourceManager and the port is the port on
which the clients can talk to the Resource Manager. </description>
</property>
<property>
<name>yarn.nodemanager.local-dirs</name>
<value>
</value>
<description>the local directories used by the nodemanager</description>
</property>
<property>
<name>yarn.nodemanager.address</name>
<value>localhost:8034</value>
<description>the nodemanagers bind to this port</description>
</property>
<property>
<name>yarn.nodemanager.resource.memory-mb</name>
<value>10240</value>
<description>the amount of memory on the NodeManager in GB</description>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce.shuffle</value>
<description>shuffle service that needs to be set for Map Reduce to run </description>
</property>
</configuration>
7. 开启单节点的Hadoop集群
格式化namenode
hadoop namenode -format#verify output is correct.开启hdfs:
start-dfs.sh打开浏览器http://localhost:50070。查看是否有一个节点已经被启动
接下来开启yarn
start-yarn.sh通过查看日志文件来验证是否正常启动
最后通过执行MapReduce任务来检查Hadoop是否正常执行
cd ${HADOOP_COMMON_HOME}/share/hadoop/mapreducehadoop jar hadoop-mapreduce-example-2.0.4-alpha.jar randomwriter out
文章出处:http://timothysc.github.io/blog/2013/04/22/personalhadoop/
在Fedora18上配置个人的Hadoop开发环境的更多相关文章
- react-native —— 在Mac上配置React Native Android开发环境排坑总结
配置React Native Android开发环境总结 1.卸载Android Studio,在终端(terminal)执行以下命令: rm -Rf /Applications/Android\ S ...
- MAC上配置asp.net core开发环境
安装.NET Core sdk https://www.microsoft.com/net/core#macos 安装VS Code https://code.visualstudio.com/Dow ...
- Mac上配置maven+eclipse+spark开发环境
1.安装jdk 2.下载scala-ide.官网:http://scala-ide.org 3.安装maven 4.在eclipse中,配置maven的安装了路径.偏好设置--->maven-- ...
- 在ubuntu下使用Eclipse搭建Hadoop开发环境
一.安装准备1.JDK版本:jdk1.7.0(jdk-7-linux-i586.tar.gz)2.hadoop版本:hadoop-1.1.1(hadoop-1.1.1.tar.gz)3.eclipse ...
- Mac OS X上搭建伪分布式CDH版本Hadoop开发环境
最近在研究数据挖掘相关的东西,在本地 Mac 环境搭建了一套伪分布式的 hadoop 开发环境,采用CDH发行版本,省时省心. 参考来源 How-to: Install CDH on Mac OSX ...
- Windows 8.0上Eclipse 4.4.0 配置CentOS 6.5 上的Hadoop2.2.0开发环境
原文地址:http://www.linuxidc.com/Linux/2014-11/109200.htm 图文详解Windows 8.0上Eclipse 4.4.0 配置CentOS 6.5 上的H ...
- Hadoop开发环境简介(转)
1.Hadoop开发环境简介 1.1 Hadoop集群简介 Java版本:jdk-6u31-linux-i586.bin Linux系统:CentOS6.0 Hadoop版本:hadoop-1.0.0 ...
- Hadoop开发环境搭建
hadoop是一个分布式系统基础架构,由Apache基金会所开发. 用户可以在不了解分布式底层细节的情况下,开发分布式程序.充分利用集群的威力高速运算和存储. Hadoop实现了一个分布式文件系统 ...
- 基于Eclipse搭建hadoop开发环境
一.基础环境准备 1.Eclipse 下载地址:http://pan.baidu.com/s/1slArxAP 2.JDK1.8 下载地址:http://pan.baidu.com/s/1i5iNy ...
随机推荐
- Nginx 禁止 ip 访问
server { listen 80 default_server; server_name _; access_log /logs/ip-access.log main; error_log /lo ...
- logging.config模块---使用配置文件管理logger
logging配置文件 一.使用到的模块: logging.config 官方文档: https://docs.python.org/3/library/logging.config.html 非官方 ...
- 小程序canvas生成二维码图片踩的坑
1:生成临时图片,保证画布被加载以及渲染(即本身不可以 hidden 或是 上级元素不可以 hidden 或是 wx:if 隐藏等) == > 建议:因为 canvas 的组件层级(z-inde ...
- centos7 jumpserver 部署和使用手册(二)
前面已经介绍了jumpserver的部署,基于这篇部署文档,下面介绍下部署完成后的的功能使用: 一.系统设置 1.1根据提供的帐号密码(admin/admin)登录jumpserver 修改 url ...
- Kneser猜想与相关推广
本文本来是想放在Borsuk-Ulam定理的应用这篇文章当中.但是这个文章实在是太长,导致有喧宾夺主之嫌,从而独立出为一篇文章,仅供参考.$\newcommand{\di}{\mathrm{dist} ...
- [React Native] Dismiss the Keyboard in React Native
In this lesson you will learn how create a re-usable component that gives the user the ability to di ...
- Domino 使用递归算法获取视图值
在关系数据库中,有两字段是父子关系.通过递归算法,输入一个父ID,能够获取全部相应的子ID.这种数据结构在组织架构中常常使用.显示一般使用树形结构.在Domino中相同能够处理这种情况,下面是个小de ...
- ThinkPHP5中find()和select()区别
ThinkPHP5中find()和select()区别 读取数据是指读取数据表中的一行数据(或者关联数据),主要通过find方法完成,例如: 1 2 3 4 $User = M("User& ...
- 4.Mocha的基本用法
转自:http://www.ruanyifeng.com/blog/2015/12/a-mocha-tutorial-of-examples.html 有了测试脚本以后,就可以用Mocha运行它.请进 ...
- Hadoop-CDH源码编译
* Hadoop-CDH源码编译 这一节我们主要讲解一下根据CDH源码包手动编译的过程,至于为什么要使用CDH,前几节已经说明,那为什么又要自己手动编译,因为CDH的5.3.6对应的Hadoop2.5 ...