UVALive-8079 Making a Team 排列组合公式化简
题目链接:https://cn.vjudge.net/problem/UVALive-8079
题意
n个人组队,队伍人数小于等于n,每个队伍需要4个不同的职务的领导。
问这n个人可以组成多少队?
n<=1e7
思路
很明显,对一个i人队伍,可以组成$ \sum\binom{i}{1}^4\binom{n}{i} = \sum i^4\binom{n}{i} $种可能。
现在分析一下复杂度,对一个n来讲我们可以求逆元来求组合数,所以O(n)复杂度。
那么现在又有1000行的数据,总的复杂度远远超过了10s的时间。
又要优化了,这次看了半天没有优化思路,赛后有人讲把整个式子拆开即可,反正我是拆不开。
这次用用某同学的方法优化。
1+\sum_1^n \binom{n}{i}x^i&=(1+x)^n \\
(1+\sum_1^n \binom{n}{i}x^i)'&=((1+x)^n)' \\
\sum_1^n i\binom{n}{i}x^{i-1}&=n(1+x)^{n-1} \\
\sum_1^n i\binom{n}{i}x^i&=n(1+x)^{n-1}x \\
\sum_1^n i^2\binom{n}{i}x^i&=n(n-1)(1+x)^{n-2}x^2+n(1+x)^{n-1}x \\
\sum_1^n i^3\binom{n}{i}x^i&=n(n-1)(n-2)(1+x)^{n-3}x^3+2n(n-1)(1+x)^{n-2}x^2+ n(n-1)(1+x)^{n-2}x^2+n(1+x)^{n-1}x \\
\sum_1^n i^4\binom{n}{i}&=2^{n-4}(n^4+20n^3-55n^2+42n)
\end{align*}
\]
这个思路可以应对$ \sum f(i) \binom{n}{i} $形式的化简,其中f(i)是i的多项乘积。
提交过程
TLE |
AC
代码
#include <cstdio>
#include <cstring>
const int maxn=1e7+20;
const int mod=1e8+7;
int pow2[maxn];
void init(void){
pow2[0]=1;
for (int i=1; i<maxn; i++)
pow2[i]=(pow2[i-1]*2)%mod;
// printf("done\n");
}
long long pow(long long x, int num){
long long res=1;
for (int i=0; i<num; i++)
res=(res*x)%mod;
return res;
}
long long func(int n){
if (n==1) return 1;
if (n==2) return 18;
if (n==3) return 132;
return ((pow2[n-4]*(pow(n, 4) + 6*pow(n, 3) + 3*pow(n, 2) - 2*n )%mod)%mod+mod)%mod;
}
int main(void){
long long n;
init();
while (scanf("%lld", &n)==1 && n)
printf("%lld\n", func(n));
return 0;
}
Time | Memory | Length | Lang | Submitted |
---|---|---|---|---|
66ms | None | 682 | C++ 5.3.0 | 2018-08-24 23:14:22 |
UVALive-8079 Making a Team 排列组合公式化简的更多相关文章
- UVaLive 7360 Run Step (排列组合,枚举)
题意:给定一个数 n ,表示一共有 n 步,然后你可以迈一步也可以迈两步,但是左腿和右腿的一步和两步数要一样,并且两步数不小于一步数,问你有多少种方式. 析:虽然是排列组合,但还是不会做.....水啊 ...
- 2017ACM暑期多校联合训练 - Team 8 1011 HDU 6143 Killer Names (容斥+排列组合,dp+整数快速幂)
题目链接 Problem Description Galen Marek, codenamed Starkiller, was a male Human apprentice of the Sith ...
- 2017ACM暑期多校联合训练 - Team 1 1006 HDU 6038 Function (排列组合)
题目链接 Problem Description You are given a permutation a from 0 to n−1 and a permutation b from 0 to m ...
- UVa 12712 && UVaLive 6653 Pattern Locker (排列组合)
题意:给定 一个n * n 的宫格,就是图案解锁,然后问你在区间 [l, r] 内的所有的个数进行组合,有多少种. 析:本来以为是数位DP,后来仔细一想是排列组合,因为怎么组合都行,不用考虑实际要考虑 ...
- 【指数型母函数】hdu1521 排列组合
#include<cstdio> #include<cstring> using namespace std; int n,m,jiecheng[11]; double a[1 ...
- 学习sql中的排列组合,在园子里搜着看于是。。。
学习sql中的排列组合,在园子里搜着看,看到篇文章,于是自己(新手)用了最最原始的sql去写出来: --需求----B, C, F, M and S住在一座房子的不同楼层.--B 不住顶层.C 不住底 ...
- .NET平台开源项目速览(11)KwCombinatorics排列组合使用案例(1)
今年上半年,我在KwCombinatorics系列文章中,重点介绍了KwCombinatorics组件的使用情况,其实这个组件我5年前就开始用了,非常方便,麻雀虽小五脏俱全.所以一直非常喜欢,才写了几 ...
- 【原创】开源.NET排列组合组件KwCombinatorics使用(三)——笛卡尔积组合
本博客所有文章分类的总目录:本博客博文总目录-实时更新 本博客其他.NET开源项目文章目录:[目录]本博客其他.NET开源项目文章目录 KwCombinatorics组件文章目录: 1. ...
- 【原创】开源.NET排列组合组件KwCombinatorics使用(二)——排列生成
本博客所有文章分类的总目录:本博客博文总目录-实时更新 本博客其他.NET开源项目文章目录:[目录]本博客其他.NET开源项目文章目录 KwCombinatorics组件文章目录: 1. ...
随机推荐
- 移动端使用rem时候动态设置html字体大小
!(function(doc, win) { var docEle = doc.documentElement, evt = "onorientationchange" in ...
- 关于linux三种网络形式
今天是开始的第一天,额,没什么仪式.舍友偶然间提醒我,应该把学习的东西,做一下规划和整理.我想一想也是对的.所以开通了这个.希望以后回来可以看看自己曾经的幼稚,那证明了我不断在学习在进步.最近在准备C ...
- 深入了解Python--元组
1. 对原元组进行插入 2. 元组的嵌套使用 3. for循环使用嵌套元组实例 4. 命名元组避免对分片混淆
- Tsinsen A1206. 小Z的袜子
/* Tsinsen A1206. 小Z的袜子 http://www.tsinsen.com/new/A1206 BZOJ 2038: [2009国家集训队]小Z的袜子(hose) http://ww ...
- 关于工作,学习中定时备份的几个方法(cron,git,mail)
首先介绍一下cron这个定时备份的工具: crontab -e : 运行文字编辑器来设定时程表,内定的文字编辑器是 VI.假设你想用别的文字编辑器.则请先设定 VISUAL 环境变数来指定使用那个文字 ...
- cocos2dx3.2 android平台搭建开发环境纠错备忘录
平台:win32 + android cocos2d版本号:3.2 搭建cocos2d-x android 常见问题: 问题1: Android platform not specified, sea ...
- Android图文混排-实现EditText图文混合插入上传
前段时间做了一个Android会议管理系统,项目需求涉及到EditText的图文混排,如图: 在上图的"会议详情"中.须要支持文本和图片的混合插入,下图演示输入的演示样例: 当会议 ...
- 朴素贝叶斯python实现
概率论是非常多机器学习算法基础,朴素贝叶斯分类器之所以称为朴素,是由于整个形式化过程中仅仅做最原始.简单的如果. (这个如果:问题中有非常多特征,我们简单如果一个个特征是独立的.该如果称做条件独立性, ...
- NOI.AC: NOIP2018 全国模拟赛习题练习
闲谈: 最后一个星期还是不浪了,做一下模拟赛(还是有点小虚) #30.candy 题目: 有一个人想买糖吃,有两家商店A,B,A商店中第i个糖果的愉悦度为Ai,B商店中第i个糖果的愉悦度为Bi 给出n ...
- hdoj--1162--Eddy's picture(最小生成树)
Eddy's picture Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) T ...