233 Matrix 矩阵快速幂
InputThere are multiple test cases. Please process till EOF.
For each case, the first line contains two postive integers n,m(n ≤ 10,m ≤ 109). The second line contains n integers, a 1,0,a 2,0,...,a n,0(0 ≤ a i,0 < 2 31).OutputFor each case, output a n,m mod 10000007.Sample Input
1 1
1
2 2
0 0
3 7
23 47 16
Sample Output
234
2799
72937
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<sstream>
#include<algorithm>
#include<queue>
#include<deque>
#include<iomanip>
#include<vector>
#include<cmath>
#include<map>
#include<stack>
#include<set>
#include<fstream>
#include<memory>
#include<list>
#include<string>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
#define MAXN 18
#define N 33
#define MOD 10000007
#define INF 1000000009
const double eps = 1e-;
const double PI = acos(-1.0);
/*
组合数学 找规律
递归显然不行,列数太多
只需考虑每个点被加上的次数
a(i,0) = a(i,1) 到 a(n,m) 路径条数(向左和向下两个方向) C(n+m-i-1,n)
发现列数太多没办法打表 再换一种方法
矩阵快速幂
从第一列向后考虑 找出他们的转移矩阵(这里很巧妙的加了一条边 凑2333后面的3)十分巧妙!~
*/
LL a[MAXN], n, m;
struct mat
{
LL data[MAXN][MAXN];
mat()
{
memset(data, , sizeof(data));
}
mat operator*(const mat& rhs)
{
mat ret;
for (int i = ; i <= n + ; i++)
{
for (int j = ; j <= n + ; j++)
{
for (int k = ; k <= n + ; k++)
ret.data[i][j] = (ret.data[i][j] + data[i][k] * rhs.data[k][j]) % MOD;
}
}
return ret;
}
};
mat fpow(mat a, LL b)
{
if (b <= ) return a;
mat tmp = a, ret;
for (int i = ; i <= n + ; i++)
ret.data[i][i] = ;
while (b!= )
{
if (b & )
ret = tmp*ret;
tmp = tmp*tmp;
b = b / ;
}
return ret;
}
int main()
{
while (cin >> n >> m)
{
a[] = ;
for (int i = ; i <= n + ; i++)
cin >> a[i];
a[n + ] = ;
mat ans;
for (int i = ; i <= n + ; i++)
{
ans.data[i][] = ;
ans.data[i][n + ] = ;
for (int j = ; j <= i; j++)
ans.data[i][j] = ;
}
ans.data[n + ][n + ] = ;
ans = fpow(ans, m);
LL result = ;
for (int i = ; i <= n + ; i++)
result = (result + a[i] * ans.data[n + ][i]) % MOD;
cout << result << endl;
}
return ;
}
233 Matrix 矩阵快速幂的更多相关文章
- HDU - 5015 233 Matrix (矩阵快速幂)
In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233 ...
- 233 Matrix(矩阵快速幂+思维)
In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233 ...
- HDU5015 233 Matrix —— 矩阵快速幂
题目链接:https://vjudge.net/problem/HDU-5015 233 Matrix Time Limit: 10000/5000 MS (Java/Others) Memor ...
- HDU 5015 233 Matrix --矩阵快速幂
题意:给出矩阵的第0行(233,2333,23333,...)和第0列a1,a2,...an(n<=10,m<=10^9),给出式子: A[i][j] = A[i-1][j] + A[i] ...
- HDU5015 233 Matrix(矩阵高速幂)
HDU5015 233 Matrix(矩阵高速幂) 题目链接 题目大意: 给出n∗m矩阵,给出第一行a01, a02, a03 ...a0m (各自是233, 2333, 23333...), 再给定 ...
- fzu 1911 Construct a Matrix(矩阵快速幂+规律)
题目链接:fzu 1911 Construct a Matrix 题目大意:给出n和m,f[i]为斐波那契数列,s[i]为斐波那契数列前i项的和.r = s[n] % m.构造一个r * r的矩阵,只 ...
- UVa 11149 Power of Matrix (矩阵快速幂,倍增法或构造矩阵)
题意:求A + A^2 + A^3 + ... + A^m. 析:主要是两种方式,第一种是倍增法,把A + A^2 + A^3 + ... + A^m,拆成两部分,一部分是(E + A^(m/2))( ...
- UVa 11149 Power of Matrix 矩阵快速幂
题意: 给出一个\(n \times n\)的矩阵\(A\),求\(A+A^2+A^3+ \cdots + A^k\). 分析: 这题是有\(k=0\)的情况,我们一开始先特判一下,直接输出单位矩阵\ ...
- Construct a Matrix (矩阵快速幂+构造)
There is a set of matrixes that are constructed subject to the following constraints: 1. The matrix ...
随机推荐
- 如何通过DirectInput技术针对莱仕达雷驰V3II游戏方向盘编程
三自由度的动感座椅可以让玩游戏人员在玩的过程中随座椅一起晃动,通过应用程序对方向盘动作的抓取来实现体感,动作类型主要分为加速(后仰,对应踩油门).减速(前倾,对应踩刹车 ).左转(向左打方向盘).右转 ...
- Linux 文件和目录操作 - cd - 切换目录
命令详解 重要星级: ★★★★★ 功能说明: cd 命令是 "change directory" 中每个单词的首字母缩写,其功能是从当前工作目录切换到指定工作目录. 语法格式: c ...
- nginx 反向跳转
语法规则: location [=|~|~*|^~] /uri/ { … }= 开头表示精确匹配^~ 开头表示uri以某个常规字符串开头,理解为匹配 url路径即可.nginx不对url做编码,因此请 ...
- 记录第一次在egret项目中使用Puremvc
这几天跟着另一个前端在做一个小游戏,使用的是egret引擎和puremvc框架,这对于我来说还是个比较大的突破吧,特此记录下. 因为在此项目中真是的用到了mvc及面向对象编程,值得学习 记录第一次在e ...
- Scala-基础-变量与常量
import junit.framework.TestCase import org.junit.Test //变量 //var 代表变量 //val 代表常量 //关键字 class,extends ...
- React Native真机调试安卓版
React Native真机调试安卓版 一.准备工作 1.1 环境搭建 React Native中文网的文档已经非常清晰地描述了,按照步骤即可.http://reactnative.cn/docs/0 ...
- JS——行内式注册事件
html中行内调用function的时候,是通过window调用的function,所以打印this等于打印window,所以在使用行内注册事件时务必传入参数this <!DOCTYPE htm ...
- [Windows Server 2008] ASP.net安装方法
★ 欢迎来到[护卫神·V课堂],网站地址:http://v.huweishen.com★ 护卫神·V课堂 是护卫神旗下专业提供服务器教学视频的网站,每周更新视频.★ 本节我们将带领大家:安装ASP.n ...
- windows远程桌面连接
服务器端: 1.我的电脑->管理->本地用户和组->用户->新建用户设置账号密码,隶属于administrator和remote user 2.我的电脑->属性-> ...
- 【转载】HTTP 响应头与状态码
原文地址:https://segmentfault.com/a/1190000006689786 HTTP Response Header 响应头域允许服务器传递不能放在状态行的附加信息,这些域主要描 ...