233 Matrix 矩阵快速幂
InputThere are multiple test cases. Please process till EOF.
For each case, the first line contains two postive integers n,m(n ≤ 10,m ≤ 109). The second line contains n integers, a 1,0,a 2,0,...,a n,0(0 ≤ a i,0 < 2 31).OutputFor each case, output a n,m mod 10000007.Sample Input
1 1
1
2 2
0 0
3 7
23 47 16
Sample Output
234
2799
72937
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<sstream>
#include<algorithm>
#include<queue>
#include<deque>
#include<iomanip>
#include<vector>
#include<cmath>
#include<map>
#include<stack>
#include<set>
#include<fstream>
#include<memory>
#include<list>
#include<string>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
#define MAXN 18
#define N 33
#define MOD 10000007
#define INF 1000000009
const double eps = 1e-;
const double PI = acos(-1.0);
/*
组合数学 找规律
递归显然不行,列数太多
只需考虑每个点被加上的次数
a(i,0) = a(i,1) 到 a(n,m) 路径条数(向左和向下两个方向) C(n+m-i-1,n)
发现列数太多没办法打表 再换一种方法
矩阵快速幂
从第一列向后考虑 找出他们的转移矩阵(这里很巧妙的加了一条边 凑2333后面的3)十分巧妙!~
*/
LL a[MAXN], n, m;
struct mat
{
LL data[MAXN][MAXN];
mat()
{
memset(data, , sizeof(data));
}
mat operator*(const mat& rhs)
{
mat ret;
for (int i = ; i <= n + ; i++)
{
for (int j = ; j <= n + ; j++)
{
for (int k = ; k <= n + ; k++)
ret.data[i][j] = (ret.data[i][j] + data[i][k] * rhs.data[k][j]) % MOD;
}
}
return ret;
}
};
mat fpow(mat a, LL b)
{
if (b <= ) return a;
mat tmp = a, ret;
for (int i = ; i <= n + ; i++)
ret.data[i][i] = ;
while (b!= )
{
if (b & )
ret = tmp*ret;
tmp = tmp*tmp;
b = b / ;
}
return ret;
}
int main()
{
while (cin >> n >> m)
{
a[] = ;
for (int i = ; i <= n + ; i++)
cin >> a[i];
a[n + ] = ;
mat ans;
for (int i = ; i <= n + ; i++)
{
ans.data[i][] = ;
ans.data[i][n + ] = ;
for (int j = ; j <= i; j++)
ans.data[i][j] = ;
}
ans.data[n + ][n + ] = ;
ans = fpow(ans, m);
LL result = ;
for (int i = ; i <= n + ; i++)
result = (result + a[i] * ans.data[n + ][i]) % MOD;
cout << result << endl;
}
return ;
}
233 Matrix 矩阵快速幂的更多相关文章
- HDU - 5015 233 Matrix (矩阵快速幂)
In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233 ...
- 233 Matrix(矩阵快速幂+思维)
In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233 ...
- HDU5015 233 Matrix —— 矩阵快速幂
题目链接:https://vjudge.net/problem/HDU-5015 233 Matrix Time Limit: 10000/5000 MS (Java/Others) Memor ...
- HDU 5015 233 Matrix --矩阵快速幂
题意:给出矩阵的第0行(233,2333,23333,...)和第0列a1,a2,...an(n<=10,m<=10^9),给出式子: A[i][j] = A[i-1][j] + A[i] ...
- HDU5015 233 Matrix(矩阵高速幂)
HDU5015 233 Matrix(矩阵高速幂) 题目链接 题目大意: 给出n∗m矩阵,给出第一行a01, a02, a03 ...a0m (各自是233, 2333, 23333...), 再给定 ...
- fzu 1911 Construct a Matrix(矩阵快速幂+规律)
题目链接:fzu 1911 Construct a Matrix 题目大意:给出n和m,f[i]为斐波那契数列,s[i]为斐波那契数列前i项的和.r = s[n] % m.构造一个r * r的矩阵,只 ...
- UVa 11149 Power of Matrix (矩阵快速幂,倍增法或构造矩阵)
题意:求A + A^2 + A^3 + ... + A^m. 析:主要是两种方式,第一种是倍增法,把A + A^2 + A^3 + ... + A^m,拆成两部分,一部分是(E + A^(m/2))( ...
- UVa 11149 Power of Matrix 矩阵快速幂
题意: 给出一个\(n \times n\)的矩阵\(A\),求\(A+A^2+A^3+ \cdots + A^k\). 分析: 这题是有\(k=0\)的情况,我们一开始先特判一下,直接输出单位矩阵\ ...
- Construct a Matrix (矩阵快速幂+构造)
There is a set of matrixes that are constructed subject to the following constraints: 1. The matrix ...
随机推荐
- Flink编程练习
目录 1.wordcount 2.双流警报EventTime 3.持续计数stateful + timer + SideOutputs 4.一定时间范围内的极值windowfunction + che ...
- 7.2 高速缓冲存储器-Cache
高速缓冲存储器:Cache.Cache的功能是提高CPU数据的输入和输出的速率.CPU的速度与主存的速度之间有巨大的差异.主存的存取时间.存取速度要比CPU的速度要慢了很多倍.为了调和它们之间的巨大速 ...
- zookeeper单机安装
安装zookeeper步骤: 1,下载zookeeper http://mirror.bit.edu.cn/apache/zookeeper/zookeeper-3.4.14/ 2,放到合适目录,解压 ...
- Java基础学习经验分享
很多人学习Java,尤其是自学的人,在学习的过程中会遇到各种各样的问题以及难点,有时候卡在一个点上可能需要很长时间,因为你在自学的过程中不知道如何去掌握和灵活运用以及该注意的点.下面我整理了新手学习可 ...
- Linux命令(005) -- kill、pkill和killall的比较
kill命令用来“杀掉”指定进程PID的进程.终止一个前台进程可以使用Ctrl+C,终止一个后台进程就须用kill命令.kill命令是通过向进程发送指定的信号来结束相应进程的.在默认情况下,kill命 ...
- 简单入门构建spark1.6.1源码环境
能有源码的辅助,加上自身的修炼,能起到很好的作用! 对于初学者,不建议,一上来看源码. 下载 http://archive.apache.org/dist/spark/spark-1.6.1/
- linux php全能环境一键安装,小白福利!
phpStudy Linux版&Win版同步上线 支持Apache/Nginx/Tengine/Lighttpd/IIS7/8/6 phpStudy for Linux 支持Apache/Ng ...
- C#入门经典 Chapter3 变量和表达式
3.1 C#基本语法 分号结束语句 花括号字符不需要附带分号 缩进 注释:/*....*/,//,/// 区分大小写 3.2 C#控制台应用程序的基本结构 namespace Chapter3 ...
- Android项目实战_手机安全卫士手机防盗界面
#安全卫士手机防盗# ###1.Activity的任务栈 1.类似一个木桶,每层只能放一个木块,我们放入木块和取出木块的时候只能从最上面开始操作 ###2.Android中的坐标系![](http:/ ...
- SQL基本操作——ALTER
ALTER TABLE 语句用于在已有的表中添加.修改或删除列. Persons 表: ID LastName FirstName Address City 1 Adams John Oxford S ...