真是道坑题,数据范围如此大。

首先构造矩阵 [ f[0] , 1] * [ a,0 ] ^n= [ f[n],1 ]

[ c,1 ]

注意到m, a, c, x0, n, g<=10^18,所以要有类似于二进制分解的方法进行快速乘,防止爆范围。

Program CODEVS1281;
type arr=array[..,..] of int64;
Program CODEVS1281;
var a,b:arr;
m,k1,k2,x0,n,mo,p:int64;
function quick(x,y:int64):int64;
var ans:int64;
begin
ans:=;
while y> do
begin
if y mod = then ans:=(ans+x) mod m;
y:=y div ;
x:=x* mod m;
end;
exit(ans);
end;
operator *(a,b:arr) c:arr;
var i,j,k:longint;
sum:int64;
begin
fillchar(c,sizeof(c),);
for i:= to do
for j:= to do
begin
sum:=;
for k:= to do
sum:=(sum+quick(a[i,k],b[k,j]))mod m;
c[i,j]:=sum;
end;
exit(c);
end;
begin
readln(m,k1,k2,x0,n,mo);
a[,]:=; a[,]:=; a[,]:=; a[,]:=;
b[,]:=k1; b[,]:=; b[,]:=k2; b[,]:=;
while n> do
begin
if n mod = then a:=a*b;
n:=n div ;
b:=b*b;
end;
writeln((quick(x0,a[,])+a[,]) mod m mod mo); end.

CODEVS1281 Xn数列 (矩阵乘法+快速乘)的更多相关文章

  1. [codevs]1250斐波那契数列<矩阵乘法&快速幂>

    题目描述 Description 定义:f0=f1=1, fn=fn-1+fn-2(n>=2).{fi}称为Fibonacci数列. 输入n,求fn mod q.其中1<=q<=30 ...

  2. 【bzoj3231】[Sdoi2008]递归数列 矩阵乘法+快速幂

    题目描述 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k 其中bj和 cj  ...

  3. 斐波那契数列 矩阵乘法优化DP

    斐波那契数列 矩阵乘法优化DP 求\(f(n) \%1000000007​\),\(n\le 10^{18}​\) 矩阵乘法:\(i\times k\)的矩阵\(A\)乘\(k\times j\)的矩 ...

  4. 1250 Fibonacci数列(矩阵乘法)

    1250 Fibonacci数列 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description 定义:f0=f1=1, fn=fn-1+fn ...

  5. Codevs 1574 广义斐波那契数列(矩阵乘法)

    1574 广义斐波那契数列 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 广义的斐波那契数列是指形如an=p*an-1+q* ...

  6. Qbxt 模拟赛 Day4 T2 gcd(矩阵乘法快速幂)

    /* 矩阵乘法+快速幂. 一开始迷之题意.. 这个gcd有个规律. a b b c=a*x+b(x为常数). 然后要使b+c最小的话. 那x就等于1咯. 那么问题转化为求 a b b a+b 就是斐波 ...

  7. 矩阵乘法快速幂 codevs 1250 Fibonacci数列

    codevs 1250 Fibonacci数列  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond   题目描述 Description 定义:f0=f1=1 ...

  8. codevs1281 矩阵乘法 快速幂 !!!手写乘法取模!!! 练习struct的构造函数和成员函数

    对于这道题目以及我的快速幂以及我的一节半晚自习我表示无力吐槽,, 首先矩阵乘法和快速幂没必要太多说吧,,嗯没必要,,我相信没必要,,实在做不出来写两个矩阵手推一下也就能理解矩阵的顺序了,要格外注意一些 ...

  9. 洛谷 P4910 帕秋莉的手环 矩阵乘法+快速幂详解

    矩阵快速幂解法: 这是一个类似斐波那契数列的矩乘快速幂,所以推荐大家先做一下下列题目:(会了,差不多就是多倍经验题了) 注:如果你不会矩阵乘法,可以了解一下P3390的题解 P1939 [模板]矩阵加 ...

随机推荐

  1. eclipse----快速设置主题色

  2. Kaka's Matrix Travels

    http://poj.org/problem?id=3422 #include <stdio.h> #include <algorithm> #include <stri ...

  3. SpringBoot2.0整合SpringSecurity实现WEB JWT认证

    相信很多做技术的朋友都做过前后端分离项目,项目分离后认证就靠JWT,费话不多说,直接上干活(写的不好还请多多见谅,大牛请绕行) 直接上代码,项目为Maven项目,结构如图: 包分类如下: com.ap ...

  4. leetCode----day02---- 买卖股票的最佳时机 II

    要求: 给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格. 设计一个算法来计算你所能获取的最大利润.你可以尽可能地完成更多的交易(多次买卖一支股票). 注意:你不能同时参与多笔交易(你必 ...

  5. JavaScript--如何插入JS

    我们来看看如何写入JS代码?你只需一步操作,使用<script>标签在HTML网页中插入JavaScript代码.注意, <script>标签要成对出现,并把JavaScrip ...

  6. ansible基础知识(二)

    软件相关模块 yum yum和rpm的区别 rpm: (Redhat package manager)RPM管理支持事务机制.增强了程序安装卸载的管理. yum: YUM被称为 Yellow dog ...

  7. jQuery使用手册,【新手必备】

    jQuery是一款同prototype一样优秀js开发库类,特别是对css和XPath的支持,使我们写js变得更加方便!如果你不是个js高手又想写出优 秀的js效果,jQuery可以帮你达到目的!   ...

  8. semantic、vue 使用分页组件和日历插件

    最近正在试试semantic-ui,结合了vue,这里忍不住吐槽semantic和vue的友好度简直不忍直视,不过既然用了,这里就分享几个用到的插件了 1.分页组件(基于vue) var pageCo ...

  9. 文件下载之ServletOutputStream

    使用response.getOutputStream可以获取ServletOutputStream,从而实现向页面发送流数据.但是需要注意的是,不能使用ajax进行请求,因为这样页面不会有任何反应,可 ...

  10. xamarin.forms模拟rem动态大小值,实现屏幕适配

    开发app的时候,比较麻烦的地方,就是处理屏幕适配,比如文字设为12的大小,测试的时候,看得文字挺正常,可是,放到高分辨率设备一看,文字就变得特别小, 怎样实现随着分辨率变大或者变小,所有的size数 ...