Time Limit: 1 second

Memory Limit: 50 MB

【问题描述】

金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱就行”。今天一早,金明就开始做预算了,他把想买的物品分为两类:主件与附件,附件是从属于某个主件的,下表就是一些主件与附件的例子:

主件 附件
电脑 打印机、扫描仪
书柜 图书
书桌 台灯、文具
工作椅

如果要买归类为附件的物品,必须先买该附件所属的主件。每个主件可以有0个、1个或2个附件。附件不再有从属于自己的附件。金明想买的东西很多,肯定会超过妈妈限定的N元。于是,他把每件物品规定了一个重要度,分为5等:用整数1~5表示,第5等最重要。他还从因特网上查到了每件物品的价格(都是10元的整数倍)。他希望在不超过N元(可以等于N元)的前提下,使每件物品的价格与重要度的乘积的总和最大。

    设第j件物品的价格为v[j],重要度为w[j],共选中了k件物品,编号依次为j1,j2,……,jk,则所求的总和为:

    v[j1]*w[j1]+v[j2]*w[j2]+
…+v[jk]*w[jk]。(其中*为乘号)

    请你帮助金明设计一个满足要求的购物单。

【输入】

的第1行,为两个正整数,用一个空格隔开:

    N m

    (其中N(<32000)表示总钱数,m(<60)为希望购买物品的个数。)

    从第2行到第m+1行,第j行给出了编号为j-1的物品的基本数据,每行有3个非负整数

    v p q

    (其中v表示该物品的价格(v<10000),p表示该物品的重要度(1~5),q表示该物品是主件还是附件。如果q=0,表示该物品为主件,如果q>0,表示该物品为附件,q是所属主件的编号)

【输出】

只有一个正整数,为不超过总钱数的物品的价格与重要度乘积的总和的最大值(<200000)。

【输入样例1】

    1000 5
    800 2 0
    400 5 1
    300 5 1
    400 3 0
    500 2 0

【输出样例1】

    2200

【题解】

注意每个主件最多只有两个附件

把有依赖关系的物品包裹在一起。

然后包裹中的物品是(x是主件)

x,x+y,x+z,x+y+z;

相互冲突。只取一个。

分组背包

物品的重量是每个物品的钱数,价值是钱数*重要度。

【代码】

#include <cstdio>

int n, m, bianhao = 0, new_bianhao[70], a[70][70] = { 0 }, w[70], c[70], f[32001];

void input_data()
{
scanf("%d%d", &n, &m);
for (int i = 1; i <= m; i++)
{
int v, p, q;
scanf("%d%d%d", &v, &p, &q); //输入它的价格 重要度 和类型
w[i] = v;
c[i] = v*p; //价值为价格乘重要度
if (q == 0) //如果是主件则增加组数。
{
bianhao++;
new_bianhao[i] = bianhao; //记录这个物品是哪个组
a[bianhao][0]++; //用a数组来记录组中的物品信息。
a[bianhao][a[bianhao][0]] = i;
}
else
a[new_bianhao[q]][++a[new_bianhao[q]][0]] = i; //如果是附属某个主件则
//获取这个主件所在的组。同时把这个物品加入到该组中。
}
} void get_ans()
{
for (int k = 1;k <= bianhao;k++) //枚举bianhao个组
for (int j = n; j >= 0; j--) //逆序枚举最大值。表示这是0/1背包类
{ //少了枚举每个组中的各个物品哪个循环。而直接列出所有的可能情况。
//根据x,x+y,x+y+z,x+z这几种情况尝试更新f[j];
if (j >= w[a[k][1]] && f[j - w[a[k][1]]] + c[a[k][1]] > f[j])
f[j] = f[j - w[a[k][1]]] + c[a[k][1]];
if (j >= w[a[k][1]] + w[a[k][2]] && f[j - w[a[k][1]] - w[a[k][2]]] + c[a[k][1]] + c[a[k][2]] > f[j])
f[j] = f[j - w[a[k][1]] - w[a[k][2]]] + c[a[k][1]] + c[a[k][2]];
if (j >= w[a[k][1]] + w[a[k][2]] + w[a[k][3]] && f[j - w[a[k][1]] - w[a[k][2]]-w[a[k][3]]] + c[a[k][1]] + c[a[k][2]]+c[a[k][3]] > f[j])
f[j] = f[j - w[a[k][1]] - w[a[k][2]]-w[a[k][3]]] + c[a[k][1]] + c[a[k][2]]+c[a[k][3]];
if (j >= w[a[k][1]] + w[a[k][3]] && f[j - w[a[k][1]] - w[a[k][3]]] + c[a[k][1]] + c[a[k][3]] > f[j])
f[j] = f[j - w[a[k][1]] - w[a[k][3]]] + c[a[k][1]] + c[a[k][3]];
}
} void output_ans()
{
printf("%d\n", f[n]);
} int main()
{
input_data();
get_ans();
output_ans();
return 0;
}

【b602】金明的预算方案的更多相关文章

  1. [codevs1155][KOJ0558][COJ0178][NOIP2006]金明的预算方案

    [codevs1155][KOJ0558][COJ0178][NOIP2006]金明的预算方案 试题描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴 ...

  2. NOIP2006 金明的预算方案

    1.             金明的预算方案 (budget.pas/c/cpp) [问题描述] 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈 ...

  3. 动态规划(背包问题):HRBUST 1377 金明的预算方案

    金明的预算方案 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱就行 ...

  4. Luogu 1064 金明的预算方案 / CJOJ 1352 [NOIP2006] 金明的预算方案(动态规划)

    Luogu 1064 金明的预算方案 / CJOJ 1352 [NOIP2006] 金明的预算方案(动态规划) Description 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己 ...

  5. [LuoguP1064][Noip2006]金明的预算方案

    金明的预算方案(Link) 题目描述 现在有\(M\)个物品,每一个物品有一个钱数和重要度,并且有一个\(Q\),如果\(Q = 0\),那么该物件可以单独购买,当\(Q != 0\)时,表示若要购买 ...

  6. 算法笔记_103:蓝桥杯练习 算法提高 金明的预算方案(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 问题描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些 ...

  7. tyvj 1057 金明的预算方案 背包dp

    P1057 金明的预算方案 时间: 1000ms / 空间: 131072KiB / Java类名: Main 背景 NOIP2006 提高组 第二道 描述 金明今天很开心,家里购置的新房就要领钥匙了 ...

  8. 【洛谷P1064】[NOIP2006] 金明的预算方案

    金明的预算方案 显然是个背包问题 把每个主件和它对应的附件放在一组,枚举每一组,有以下几种选法: 1.都不选 2.只选主件 3.一个主件+一个附件 4.一个主件+两个附件 于是就成了01背包.. #i ...

  9. 「NOIP2006」「LuoguP1064」 金明的预算方案(分组背包

    题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过NNN元钱就行” ...

  10. NOIP 2006 金明的预算方案(洛谷P1064,动态规划递推,01背包变形,滚动数组)

    一.题目链接:P1064 金明的预算方案 二.思路 1.一共只有五种情况 @1.不买 @2.只买主件 @3.买主件和附件1(如果不存在附件也要运算,只是这时附件的数据是0,也就是算了对标准的结果也没影 ...

随机推荐

  1. Codefroces 831B Keyboard Layouts

    B. Keyboard Layouts time limit per test 1 second memory limit per test 256 megabytes input standard ...

  2. CentOS7下简单安装python3.7.0步骤

    一.安装编译工具 #yum -y install gcc #yum -y groupinstall "Development tools" #yum -y install zlib ...

  3. Spring学习总结(5)——IOC注入方式总结

    一.构造注入 在类被实例化的时候,它的构造方法被调用并且只能调用一次.所以它被用于类的初始化操作.<constructor-arg>是<bean>标签的子标签.通过其<v ...

  4. python登录验证程序

    自己写的一个python登录验证程序: 基础需求: 让用户输入用户名密码 认证成功后显示欢迎信息 输错三次后退出程序 升级需求: 可以支持多个用户登录 (提示,通过列表存多个账户信息) 用户3次认证失 ...

  5. [D3] Add image to the node

    We can create node with 'g' container, then append 'image' to the nodes. // Create container for the ...

  6. SQL_wm_concat函数实验:实现字段合并

    原创作品,出自 "深蓝的blog" 博客.欢迎转载.转载时请务必注明下面出处,否则追究版权法律责任. 深蓝的blog:http://blog.csdn.net/huangyanlo ...

  7. vue使用(二)

    本节目标:           1.数据路径的三种方式          2.{{}}和v-html的区别 1.绑定图片的路径 方法一:直接写路径 <img src="http://p ...

  8. 关于Clipboard和GlobalAlloc函数的关系

    一句话:为了满足进程间通信,使用了clipboard的方法,clipboard是系统提供的一段任何进程都可以访问的公共内存块,malloc 和new分配的动态内存块是在进程的私有地址空间分配的,所以必 ...

  9. java.lang.IllegalArgumentException: org.hibernate.hql.internal.ast.QuerySyntaxException: student is not mapped

    Spring 5.0 +Jpa,使用@Query实现 自定义查询报错: java.lang.IllegalArgumentException: org.hibernate.hql.internal.a ...

  10. (转)chrome浏览器收藏夹(书签)的导出与导入

    导出chrome浏览器的书签到一个文件中.首先选择chrome浏览器的书签管理器菜单.然后点击“整理”,然后选择“将书签导出到html文件”. 步骤阅读 2 将导出的html文件保存,用于下次导入,这 ...