Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 21981 Accepted Submission(s): 8121

Problem Description

The aspiring Roy the Robber has seen a lot of American movies, and knows that the bad guys usually gets caught in the end, often because they become too greedy. He has decided to work in the lucrative business of bank robbery only for a short while, before retiring to a comfortable job at a university.

For a few months now, Roy has been assessing the security of various banks and the amount of cash they hold. He wants to make a calculated risk, and grab as much money as possible.

His mother, Ola, has decided upon a tolerable probability of getting caught. She feels that he is safe enough if the banks he robs together give a probability less than this.

Input

The first line of input gives T, the number of cases. For each scenario, the first line of input gives a floating point number P, the probability Roy needs to be below, and an integer N, the number of banks he has plans for. Then follow N lines, where line j gives an integer Mj and a floating point number Pj .

Bank j contains Mj millions, and the probability of getting caught from robbing it is Pj .

Output

For each test case, output a line with the maximum number of millions he can expect to get while the probability of getting caught is less than the limit set.

Notes and Constraints

0 < T <= 100

0.0 <= P <= 1.0

0 < N <= 100

0 < Mj <= 100

0.0 <= Pj <= 1.0

A bank goes bankrupt if it is robbed, and you may assume that all probabilities are independent as the police have very low funds.

Sample Input

3

0.04 3

1 0.02

2 0.03

3 0.05

0.06 3

2 0.03

2 0.03

3 0.05

0.10 3

1 0.03

2 0.02

3 0.05

Sample Output

2

4

6

【题目链接】:http://acm.hdu.edu.cn/showproblem.php?pid=2955

【题解】



这题的思维量挺大的吧。

首先要把被抓的概率转化为安全的概率.因为求几个事件的被抓概率并不好求。

而安全的概率则可以直接乘在一起;

然后设f[i]表示偷到钱数为i时,安全的概率最大是多少;

f[0]=1,其他一开始都为0;

(0表示什么都不偷,那肯定是百分百安全的);

然后f[j] = max(f[j],f[j-m[i]]*(1-p[i]));

(按照01背包的方式更新就好);

(每个银行有抢和不抢两种选择);

然后从大到下枚举j,找到最大的满足f[j]>(1-P)的j,然后输出就好.



【完整代码】

#include <bits/stdc++.h>

using namespace std;

const int MAXN = 1e2+10;

int n;
int m[MAXN];
double p[MAXN],P,f[MAXN*MAXN]; int main()
{
//freopen("F:\\rush.txt","r",stdin);
int T;
scanf("%d",&T);
while (T--)
{
scanf("%lf%d",&P,&n);
int sum = 0;
for (int i = 1;i <= n;i++)
scanf("%d%lf",&m[i],&p[i]),sum+=m[i];
for (int i = 1;i <= sum;i++)
f[i] = 0;
f[0] = 1;
for (int i = 1;i <= n;i++)
for (int j = sum;j >= 0;j--)
f[j] = max(f[j],f[j-m[i]]*(1-p[i]));
int ans = 0;
for (int i = sum;i >= 1;i--)
if (f[i]>(1-P))
{
ans = i;
break;
}
cout << ans << endl;
}
return 0;
}

【hdu 2955】Robberies的更多相关文章

  1. 【HDU 2955】Robberies(DP)

    题意是给你抢劫每个银行可获得的钱m和被抓的概率p,求被抓的概率小于P,最多能抢多少钱.01背包问题,体积是m,价值是p.被抓的概率不是简单相加,而应该是1−Π(1−p[i])DP:dp[i]表示抢到i ...

  2. 【数位dp】【HDU 3555】【HDU 2089】数位DP入门题

    [HDU  3555]原题直通车: 代码: // 31MS 900K 909 B G++ #include<iostream> #include<cstdio> #includ ...

  3. 【HDU 5647】DZY Loves Connecting(树DP)

    pid=5647">[HDU 5647]DZY Loves Connecting(树DP) DZY Loves Connecting Time Limit: 4000/2000 MS ...

  4. -【线性基】【BZOJ 2460】【BZOJ 2115】【HDU 3949】

    [把三道我做过的线性基题目放在一起总结一下,代码都挺简单,主要就是贪心思想和异或的高斯消元] [然后把网上的讲解归纳一下] 1.线性基: 若干数的线性基是一组数a1,a2,a3...an,其中ax的最 ...

  5. 【HDU 2196】 Computer(树的直径)

    [HDU 2196] Computer(树的直径) 题链http://acm.hdu.edu.cn/showproblem.php?pid=2196 这题可以用树形DP解决,自然也可以用最直观的方法解 ...

  6. 【HDU 2196】 Computer (树形DP)

    [HDU 2196] Computer 题链http://acm.hdu.edu.cn/showproblem.php?pid=2196 刘汝佳<算法竞赛入门经典>P282页留下了这个问题 ...

  7. 【HDU 5145】 NPY and girls(组合+莫队)

    pid=5145">[HDU 5145] NPY and girls(组合+莫队) NPY and girls Time Limit: 8000/4000 MS (Java/Other ...

  8. 【hdu 1043】Eight

    [题目链接]:http://acm.hdu.edu.cn/showproblem.php?pid=1043 [题意] 会给你很多组数据; 让你输出这组数据到目标状态的具体步骤; [题解] 从12345 ...

  9. 【HDU 3068】 最长回文

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=3068 [算法] Manacher算法求最长回文子串 [代码] #include<bits/s ...

随机推荐

  1. 删除online日志測试及ora-600 [4194]错误的处理

    今天做了一个关于破坏online日志的恢复測试,主要三个场景: 測试1:正常关闭数据库后删除非当前日志 測试2:正常关库后.删除在线日志文件 測试3:非正常关闭数据库.并删除当前在线日志文件 我的測试 ...

  2. 【JavaScript】--JavaScript总结一览无余

    对于 北风网李炎恢老师的JavaScript的视频也真的是醉了.视频整体来说结构清晰.内容比較简单.JS是一种灵活,开放的语言,语法规则并没有那么的死板.非常easy让人接受. JS的基础部分跟C#类 ...

  3. 1.2 Use Cases中 Event Sourcing官网剖析(博主推荐)

    不多说,直接上干货! 一切来源于官网 http://kafka.apache.org/documentation/ Event Sourcing 事件采集 Event sourcing is a st ...

  4. 【hihocoder 1564】同步H公司的终端

    [链接]http://hihocoder.com/problemset/problem/1564 [题意] 在这里写题意 [题解] 如下图 (上图中节点旁边的红色数字为它的权值) 从叶子节点开始考虑. ...

  5. POJ 1166 The Clocks 高斯消元 + exgcd(纯属瞎搞)

    依据题意可构造出方程组.方程组的每一个方程格式均为:C1*x1 + C2*x2 + ...... + C9*x9 = sum + 4*ki; 高斯消元构造上三角矩阵,以最后一个一行为例: C*x9 = ...

  6. ASM学习笔记--ASM 4 user guide 第二章要点翻译总结

    参考:ASM 4 user guide 第一部分 core API 第二章  类 2.1.1概观 编译后的类包括: l  一个描述部分:包括修饰语(比如public或private).名字.父类.接口 ...

  7. amazeui学习笔记--css(常用组件1)--小徽章Badge

    amazeui学习笔记--css(常用组件1)--小徽章Badge 一.总结 1.am-badge:添加am-badge来声明小徽章对象 <span class="am-badge a ...

  8. Codeforces Round #445 Div. 1 C Maximum Element (dp + 组合数学)

    题目链接: http://codeforces.com/contest/889/problem/C 题意: 给你 \(n\)和 \(k\). 让你找一种全排列长度为\(n\)的 \(p\),满足存在下 ...

  9. 最短路算法详解(Dijkstra/SPFA/Floyd)

    新的整理版本版的地址见我新博客 http://www.hrwhisper.me/?p=1952 一.Dijkstra Dijkstra单源最短路算法,即计算从起点出发到每个点的最短路.所以Dijkst ...

  10. netty reactor线程模型分析

    netty4线程模型 ServerBootstrap http示例 // Configure the server. EventLoopGroup bossGroup = new EpollEvent ...