Unpaired/Partially/Unsupervised Image Captioning
这篇涉及到以下三篇论文:
Unpaired Image Captioning by Language Pivoting (ECCV 2018)
Show, Tell and Discriminate: Image Captioning by Self-retrieval with Partially Labeled Data (ECCV 2018)
Unsupervised Image Caption (CVPR 2019)
1. Unpaired Image Captioning by Language Pivoting (ECCV 2018)
Abstract
作者提出了一种通过语言枢轴(language pivoting)的方法来解决没有成对的图片和描述的image caption问题(unpaired image captioning problem)。
Our method can effectively capture the characteristics of an image captioner from the pivot language(Chinese) and align it to the target language (English) using another pivot-target (Chinese-English) sentence parallel corpus.
Introduction
由于encoder-decoder结构需要大量的image-caption pairs来训练,通常这样的大规模标记数据是难以获得的,研究人员开始思考通过非成对的数据或者是用半监督的方法来利用其他领域成对的标记数据来实现无监督学习的目的。在本文中,作者希望通过使用源语言——中文作为枢轴语言,来消除输入图片和目标语言——英文描述之间的间隔,这需要有图片——中文描述以及中文——英文两个成对的数据集,从而达到不需要有图片——英文描述成对数据集来实现图片到英文描述生成的目的。
作者说这种思想来源于机器翻译领域的相关研究,使用这种策略的机器翻译方法通常分为两步,首先将源语言翻译成枢轴语言,然后将枢轴语言翻译成目标语言。但是image caption与机器翻译又有很多不同的地方:1.image-Chinese caption和Chinese-English中句子的风格和词汇分布有很大区别;2.source-to-pivot转换的错误会传递到pivot-to-target
Use AIC-ICC and AIC-MT as the training datasets and two datasets (MSCOCO and Flickr30K) as the validation datasets
i: source image, x: pivot language sentence, y: target language, y_hat: ground truth captions in target language(对于这里的y_hat,是从MSCOCO训练集里面随机抽取的描述性语句(captions),用来训练下autoencoder)
这篇文章的思想比较容易理解,难点是把Image-to-Pivot和Pivot-to-Target联系起来,克服两个数据集语言风格和词汇分布不一致这两个问题。
2. Show, Tell and Discriminate: Image Captioning by Self-retrieval with Partially Labeled Data (ECCV 2018)
作者在这篇文章中指出,目前已有的caption模型倾向于复制训练集中的句子或短语,生成的描述通常是泛化和模板化的,缺乏生成区分性描述的能力。
基于GAN的caption模型可以提升句子的多样性,但在标准的评价指标上会有比较差的表现。
作者提出在Captioning Module上结合一个Self-retrieval Module,来达到generate discriminative captions的目的。
3. Unsupervised Image Caption (CVPR 2019)
这是一篇真正的无监督方法来做Image Caption的文章,不 rely on any labeled image sentence pairs
与Unsupervised Machine Translation相比,Unsupervised Image Caption任务更具挑战是因为图像和文本是两个不同的模态,有很大的差别。
模型由an image encoder, a sentence generator,a sentence discriminator组成。
Encoder:
普通的image encoder即可,作者采用的是Inception-V4
Generator:
由LSTM组成的decoder
Discriminator:
由LSTM来实现,用来distinguish whether a partial sentence is a real sentence from the corpus or is generated by the model.
Training:
由于do not have any paired image-sentence,就不能用有监督的方式来训练模型了,于是作者设计了三种目标函数来实现Unsupervised Image Captioning
Adversarial Caption Generation:
Visual Concept Distillation:
Bi-directional Image-Sentence Reconstruction:
Image Reconstruction: reconstruct the image features instead of the full image
Sentence Reconstruction: the discriminator can encode one sentence and project it into the common latent space, which can be viewed as one image representation related to the given sentence. The generator can reconstruct the sentence based on the obtained representation.
Integration:Generator:
Discriminator:
Initialization
It challenging to adequately train our image captioning model from scratch with the given unpaired data, need an initialization pipeline to pre-train the generator and discriminator.
For generator:
Firstly, build a concept dictionary consisting of the object classes in the OpenImages dataset
Second, train a concept-to-sentence(con2sen) model using the sentence corpus only
Third, detect the visual concepts in each image using the existing visual concept detector. Use the detected concepts and the concept-to-sentence model to generate a pseudo caption for each image
Fourth, train the generator with the pseudo image-caption pairs
For discriminator, initialized by training an adversarial sentence generation model on the sentence corpus.
Unpaired/Partially/Unsupervised Image Captioning的更多相关文章
- Image Captioning代码复现
Image caption generation: https://github.com/eladhoffer/captionGen Simple encoder-decoder image capt ...
- ( 转) Awesome Image Captioning
Awesome Image Captioning 2018-12-03 19:19:56 From: https://github.com/zhjohnchan/awesome-image-capti ...
- 《Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks》论文笔记
Code Address:https://github.com/junyanz/CycleGAN. Abstract 引出Image Translating的概念(greyscale to color ...
- Image Captioning 经典论文合辑
Image Caption: Automatically describing the content of an image domain:CV+NLP Category:(by myself, y ...
- Video Captioning 综述
1.Unsupervised learning of video representations using LSTMs 方法:从先前的帧编码预测未来帧序列 相似于Sequence to sequen ...
- paper 124:【转载】无监督特征学习——Unsupervised feature learning and deep learning
来源:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio c ...
- Machine Learning Algorithms Study Notes(4)—无监督学习(unsupervised learning)
1 Unsupervised Learning 1.1 k-means clustering algorithm 1.1.1 算法思想 1.1.2 k-means的不足之处 1 ...
- 论文笔记之:Deep Recurrent Q-Learning for Partially Observable MDPs
Deep Recurrent Q-Learning for Partially Observable MDPs 摘要:DQN 的两个缺陷,分别是:limited memory 和 rely on b ...
- Unsupervised Classification - Sprawl Classification Algorithm
Idea Points (data) in same cluster are near each others, or are connected by each others. So: For a ...
随机推荐
- 百度消息推送REST API探究
一.百度云推送介绍 云推送(Push)是百度开放云向开发者提供的消息推送服务:通过利用云端与客户端之间建立稳定.可靠的长连接来为开发者提供向客户端应用推送实时消息服务. 百度云推送服务支持推送三种类型 ...
- Weblogic中可以使用的脚本
启动被管服务器的脚本 rm -rf ../servers/server5002/stage/* rm -rf ../servers/server5002/tmp/* sleep 20 USER_MEM ...
- 《图说VR》——HTC Vive控制器按键事件解耦使用
本文章由cartzhang编写,转载请注明出处. 全部权利保留. 文章链接:http://blog.csdn.net/cartzhang/article/details/53915229 作者:car ...
- Myeclipse - Web项目转换技巧--处理Java项目、SVN非Web项目问题
喜欢从业的专注,七分学习的态度. 概述 对于Java调试,使用Eclipse习惯性的使用Junit调试,使用Myeclipse习惯性的将项目转成Web项目在Tomcat或Weblogic中调试,在My ...
- Cocos2d-x 脚本语言Lua基本语法
Cocos2d-x 脚本语言Lua基本语法 前面一篇博客对Lua这门小巧的语言进行了简单的介绍.本篇博客来给大家略微讲一下Lua的语法.不会长篇累牍得把Lua的全部语法都讲一遍,这里通过下面几点来讲L ...
- 一种基于uCos-II操作系统和lwIP协议栈的IEEE-1588主站以及基于该主站的报文处理方法
主站以及应用于电力系统的支持IEEE‐1588协议的主时钟(IEEE‐1588主站)的实现方法.该方法是在一个低成本的硬件平台上,借助uCos‐II操作系统和TCP/IP的协议栈,对以太网数据进行了分 ...
- Eclipse 学习总结
一. Eclipse 中一个普通 JavaWeb 项目的目录结构 如果项目工程中没有web.xml文件,可以手动动态添加. 右击项目 -> java EE Tools -> ...
- PAT 1031-1040 题解
早期部分代码用 Java 实现.由于 PAT 虽然支持各种语言,但只有 C/C++标程来限定时间,许多题目用 Java 读入数据就已经超时,后来转投 C/C++.浏览全部代码:请戳 本文谨代表个人思路 ...
- 国产操作系统剽窃Linux内核可耻!
10月28日,新浪科技发表文章,题为"国产操作系统迎来利好:部委机构正大量採购",读后有感. 如今,国家进入法制时代.政府採购"国产操作系统",似乎成为一种&q ...
- Matlab Tricks(十四) —— 句柄(handle)(图形对象属性的读取与修改)
0. 句柄的获得 H = subplot(1,2,1); saveas(H, [pathname,filename], 'jpg'); 1. h = plot(-) a = 0:10:360; x = ...