这篇涉及到以下三篇论文:

Unpaired Image Captioning by Language Pivoting (ECCV 2018)

Show, Tell and Discriminate: Image Captioning by Self-retrieval with Partially Labeled Data (ECCV 2018)

Unsupervised Image Caption (CVPR 2019)

1. Unpaired Image Captioning by Language Pivoting (ECCV 2018)

Abstract

作者提出了一种通过语言枢轴(language pivoting)的方法来解决没有成对的图片和描述的image caption问题(unpaired image captioning problem)。

Our method can effectively capture the characteristics of an image captioner from the pivot language(Chinese) and align it to the target language (English) using another pivot-target (Chinese-English) sentence parallel corpus.

Introduction

由于encoder-decoder结构需要大量的image-caption pairs来训练,通常这样的大规模标记数据是难以获得的,研究人员开始思考通过非成对的数据或者是用半监督的方法来利用其他领域成对的标记数据来实现无监督学习的目的。在本文中,作者希望通过使用源语言——中文作为枢轴语言,来消除输入图片和目标语言——英文描述之间的间隔,这需要有图片——中文描述以及中文——英文两个成对的数据集,从而达到不需要有图片——英文描述成对数据集来实现图片到英文描述生成的目的。

作者说这种思想来源于机器翻译领域的相关研究,使用这种策略的机器翻译方法通常分为两步,首先将源语言翻译成枢轴语言,然后将枢轴语言翻译成目标语言。但是image caption与机器翻译又有很多不同的地方:1.image-Chinese caption和Chinese-English中句子的风格和词汇分布有很大区别;2.source-to-pivot转换的错误会传递到pivot-to-target

Use AIC-ICC and AIC-MT as the training datasets and two datasets (MSCOCO and Flickr30K) as the validation datasets

i: source image, x: pivot language sentence, y: target language, y_hat: ground truth captions in target language(对于这里的y_hat,是从MSCOCO训练集里面随机抽取的描述性语句(captions),用来训练下autoencoder)

这篇文章的思想比较容易理解,难点是把Image-to-Pivot和Pivot-to-Target联系起来,克服两个数据集语言风格和词汇分布不一致这两个问题。

2. Show, Tell and Discriminate: Image Captioning by Self-retrieval with Partially Labeled Data (ECCV 2018)

作者在这篇文章中指出,目前已有的caption模型倾向于复制训练集中的句子或短语,生成的描述通常是泛化和模板化的,缺乏生成区分性描述的能力。

基于GAN的caption模型可以提升句子的多样性,但在标准的评价指标上会有比较差的表现。

作者提出在Captioning Module上结合一个Self-retrieval Module,来达到generate discriminative captions的目的。

3. Unsupervised Image Caption (CVPR 2019)

这是一篇真正的无监督方法来做Image Caption的文章,不 rely on any labeled image sentence pairs

与Unsupervised Machine Translation相比,Unsupervised Image Caption任务更具挑战是因为图像和文本是两个不同的模态,有很大的差别。

模型由an image encoder, a sentence generator,a sentence discriminator组成。

Encoder:

普通的image encoder即可,作者采用的是Inception-V4

Generator:

由LSTM组成的decoder

Discriminator:

由LSTM来实现,用来distinguish whether a partial sentence is a real sentence from the corpus or is generated by the model.

Training:

由于do not have any paired image-sentence,就不能用有监督的方式来训练模型了,于是作者设计了三种目标函数来实现Unsupervised Image Captioning

Adversarial Caption Generation:

Visual Concept Distillation:

Bi-directional Image-Sentence Reconstruction:

Image Reconstruction: reconstruct the image features instead of the full image

Sentence Reconstruction: the discriminator can encode one sentence and project it into the common latent space, which can be viewed as one image representation related to the given sentence. The generator can reconstruct the sentence based on the obtained representation.

Integration:Generator:

Discriminator:

Initialization

It challenging to adequately train our image captioning model from scratch with the given unpaired data, need an initialization pipeline to pre-train the generator and discriminator.

For generator:

Firstly, build a concept dictionary consisting of the object classes in the OpenImages dataset

Second, train a concept-to-sentence(con2sen) model using the sentence corpus only

Third, detect the visual concepts in each image using the existing visual concept detector. Use the detected concepts and the concept-to-sentence model to generate a pseudo caption for each image

Fourth, train the generator with the pseudo image-caption pairs

For discriminator, initialized by training an adversarial sentence generation model on the sentence corpus.

Unpaired/Partially/Unsupervised Image Captioning的更多相关文章

  1. Image Captioning代码复现

    Image caption generation: https://github.com/eladhoffer/captionGen Simple encoder-decoder image capt ...

  2. ( 转) Awesome Image Captioning

    Awesome Image Captioning 2018-12-03 19:19:56 From: https://github.com/zhjohnchan/awesome-image-capti ...

  3. 《Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks》论文笔记

    Code Address:https://github.com/junyanz/CycleGAN. Abstract 引出Image Translating的概念(greyscale to color ...

  4. Image Captioning 经典论文合辑

    Image Caption: Automatically describing the content of an image domain:CV+NLP Category:(by myself, y ...

  5. Video Captioning 综述

    1.Unsupervised learning of video representations using LSTMs 方法:从先前的帧编码预测未来帧序列 相似于Sequence to sequen ...

  6. paper 124:【转载】无监督特征学习——Unsupervised feature learning and deep learning

    来源:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio c ...

  7. Machine Learning Algorithms Study Notes(4)—无监督学习(unsupervised learning)

    1    Unsupervised Learning 1.1    k-means clustering algorithm 1.1.1    算法思想 1.1.2    k-means的不足之处 1 ...

  8. 论文笔记之:Deep Recurrent Q-Learning for Partially Observable MDPs

    Deep Recurrent Q-Learning for Partially Observable MDPs  摘要:DQN 的两个缺陷,分别是:limited memory 和 rely on b ...

  9. Unsupervised Classification - Sprawl Classification Algorithm

    Idea Points (data) in same cluster are near each others, or are connected by each others. So: For a ...

随机推荐

  1. Cocos2d-x 3.0final 终结者系列教程05-AppDelegate入口类

    下面是Cocos2d-x的程序入口: class  AppDelegate : private cocos2d::Application { public: AppDelegate(); virtua ...

  2. UTC时间与当地时间的转换关系?

    UTC时间与当地时间转换关系? 一.总结 1.UTC +时区差=本地时间 2.UTC是世界统一时间 二.UTC时间是什么 1.UTC时间 协调世界时,又称世界统一时间.世界标准时间.国际协调时间.由于 ...

  3. 【9705】&&【a801】细胞

    Time Limit: 10 second Memory Limit: 2 MB 问题描述 一矩形阵列由数字1~9代表细胞,细胞的定义是沿细胞数字上下左右如果还是细胞数字则为同一细胞,求给定矩形阵列的 ...

  4. CodeBlocks环境搭建及创建第一个C++程序

    某业界大牛推荐最佳的途径是从raytracing入门,所以本屌开始学习<Ray Tracing In One Weekend>. 该书是基于C++的.本屌从未学过C++.感觉告诉我,要先搭 ...

  5. windows 下 gcc/g++ 的安装(有图,一步一步)

    下载 mingw 首先打开 www.mingw.org .(注意版本,建议64bit) www.mingw.org 直接点击右上方的 Download Installer 即可下载. 点击 Downl ...

  6. jquery 源码学习(二)

    在网上找到一篇广为流传的文章<常用正则表达式>,逐一分析,不足地方进行补充和纠正   作者:nuysoft/JS攻城师/高云 QQ:47214707 EMail:nuysoft@gmail ...

  7. Android开发Eclipse中DDMS中Heap使用及GC_EXTERNAL_ALLOC含义

    一.先说DDMS中的Heap的使用,通过可以观察VM中的Java内存,但是无法查看通过JNI分配的内存. 直接上图,废话少说... 图一:将要查看内存使用情况的项目Update heap 图二:操作项 ...

  8. 关于undefind

    var undefined = "东方云游"; alert(undefined); // undefined 不一定为undefined ie8(包含ie8)以下会返回 " ...

  9. 使用Ocelot做网关

    1首先创建一个json的配置文件,文件名随便取,我取Ocelot.json 这个配置文件有两种配置方式,第一种,手动填写 服务所在的ip和端口:第二种,用Consul进行服务发现 第一种如下: { & ...

  10. C++继承经典样例

    c++继承经典样例 #include <iostream.h> class Base { private:         int b_number; public:         Ba ...