这篇涉及到以下三篇论文:

Unpaired Image Captioning by Language Pivoting (ECCV 2018)

Show, Tell and Discriminate: Image Captioning by Self-retrieval with Partially Labeled Data (ECCV 2018)

Unsupervised Image Caption (CVPR 2019)

1. Unpaired Image Captioning by Language Pivoting (ECCV 2018)

Abstract

作者提出了一种通过语言枢轴(language pivoting)的方法来解决没有成对的图片和描述的image caption问题(unpaired image captioning problem)。

Our method can effectively capture the characteristics of an image captioner from the pivot language(Chinese) and align it to the target language (English) using another pivot-target (Chinese-English) sentence parallel corpus.

Introduction

由于encoder-decoder结构需要大量的image-caption pairs来训练,通常这样的大规模标记数据是难以获得的,研究人员开始思考通过非成对的数据或者是用半监督的方法来利用其他领域成对的标记数据来实现无监督学习的目的。在本文中,作者希望通过使用源语言——中文作为枢轴语言,来消除输入图片和目标语言——英文描述之间的间隔,这需要有图片——中文描述以及中文——英文两个成对的数据集,从而达到不需要有图片——英文描述成对数据集来实现图片到英文描述生成的目的。

作者说这种思想来源于机器翻译领域的相关研究,使用这种策略的机器翻译方法通常分为两步,首先将源语言翻译成枢轴语言,然后将枢轴语言翻译成目标语言。但是image caption与机器翻译又有很多不同的地方:1.image-Chinese caption和Chinese-English中句子的风格和词汇分布有很大区别;2.source-to-pivot转换的错误会传递到pivot-to-target

Use AIC-ICC and AIC-MT as the training datasets and two datasets (MSCOCO and Flickr30K) as the validation datasets

i: source image, x: pivot language sentence, y: target language, y_hat: ground truth captions in target language(对于这里的y_hat,是从MSCOCO训练集里面随机抽取的描述性语句(captions),用来训练下autoencoder)

这篇文章的思想比较容易理解,难点是把Image-to-Pivot和Pivot-to-Target联系起来,克服两个数据集语言风格和词汇分布不一致这两个问题。

2. Show, Tell and Discriminate: Image Captioning by Self-retrieval with Partially Labeled Data (ECCV 2018)

作者在这篇文章中指出,目前已有的caption模型倾向于复制训练集中的句子或短语,生成的描述通常是泛化和模板化的,缺乏生成区分性描述的能力。

基于GAN的caption模型可以提升句子的多样性,但在标准的评价指标上会有比较差的表现。

作者提出在Captioning Module上结合一个Self-retrieval Module,来达到generate discriminative captions的目的。

3. Unsupervised Image Caption (CVPR 2019)

这是一篇真正的无监督方法来做Image Caption的文章,不 rely on any labeled image sentence pairs

与Unsupervised Machine Translation相比,Unsupervised Image Caption任务更具挑战是因为图像和文本是两个不同的模态,有很大的差别。

模型由an image encoder, a sentence generator,a sentence discriminator组成。

Encoder:

普通的image encoder即可,作者采用的是Inception-V4

Generator:

由LSTM组成的decoder

Discriminator:

由LSTM来实现,用来distinguish whether a partial sentence is a real sentence from the corpus or is generated by the model.

Training:

由于do not have any paired image-sentence,就不能用有监督的方式来训练模型了,于是作者设计了三种目标函数来实现Unsupervised Image Captioning

Adversarial Caption Generation:

Visual Concept Distillation:

Bi-directional Image-Sentence Reconstruction:

Image Reconstruction: reconstruct the image features instead of the full image

Sentence Reconstruction: the discriminator can encode one sentence and project it into the common latent space, which can be viewed as one image representation related to the given sentence. The generator can reconstruct the sentence based on the obtained representation.

Integration:Generator:

Discriminator:

Initialization

It challenging to adequately train our image captioning model from scratch with the given unpaired data, need an initialization pipeline to pre-train the generator and discriminator.

For generator:

Firstly, build a concept dictionary consisting of the object classes in the OpenImages dataset

Second, train a concept-to-sentence(con2sen) model using the sentence corpus only

Third, detect the visual concepts in each image using the existing visual concept detector. Use the detected concepts and the concept-to-sentence model to generate a pseudo caption for each image

Fourth, train the generator with the pseudo image-caption pairs

For discriminator, initialized by training an adversarial sentence generation model on the sentence corpus.

Unpaired/Partially/Unsupervised Image Captioning的更多相关文章

  1. Image Captioning代码复现

    Image caption generation: https://github.com/eladhoffer/captionGen Simple encoder-decoder image capt ...

  2. ( 转) Awesome Image Captioning

    Awesome Image Captioning 2018-12-03 19:19:56 From: https://github.com/zhjohnchan/awesome-image-capti ...

  3. 《Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks》论文笔记

    Code Address:https://github.com/junyanz/CycleGAN. Abstract 引出Image Translating的概念(greyscale to color ...

  4. Image Captioning 经典论文合辑

    Image Caption: Automatically describing the content of an image domain:CV+NLP Category:(by myself, y ...

  5. Video Captioning 综述

    1.Unsupervised learning of video representations using LSTMs 方法:从先前的帧编码预测未来帧序列 相似于Sequence to sequen ...

  6. paper 124:【转载】无监督特征学习——Unsupervised feature learning and deep learning

    来源:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio c ...

  7. Machine Learning Algorithms Study Notes(4)—无监督学习(unsupervised learning)

    1    Unsupervised Learning 1.1    k-means clustering algorithm 1.1.1    算法思想 1.1.2    k-means的不足之处 1 ...

  8. 论文笔记之:Deep Recurrent Q-Learning for Partially Observable MDPs

    Deep Recurrent Q-Learning for Partially Observable MDPs  摘要:DQN 的两个缺陷,分别是:limited memory 和 rely on b ...

  9. Unsupervised Classification - Sprawl Classification Algorithm

    Idea Points (data) in same cluster are near each others, or are connected by each others. So: For a ...

随机推荐

  1. Android程序解析XML文件的方法及使用PULL解析XML案例

    一.一般解析XML文件的方法有SAX和DOM.PULL (1)DOM(JAXP Crimson解析器) DOM是用与平台和语言无关的方式表示XML文档的官方W3C标准.DOM是以层次结构组织的节点或信 ...

  2. Hadoop源码分析(MapReduce概论)

    大家都熟悉文件系统,在对HDFS进行分析前,我们并没有花非常多的时间去介绍HDFS的背景.毕竟大家对文件系统的还是有一定的理解的,并且也有非常好的文档.在分析Hadoop的MapReduce部分前,我 ...

  3. protobuf入门教程

    1.简介和安装 2.消息类型 3.proto3 与 proto2 的区别 4.常用序列化/反序列化接口 5.repeated限定修饰符 6.枚举(enum).包(package) 7.导入定义(imp ...

  4. 从 BM 到 RBM

    1. 拓扑结构上 如下图示,在拓扑结构上,RBM(受限的玻尔兹曼机)与 BM(玻尔兹曼机)的最大区别在于: RBM 取消了可见层的层内连接以及隐含层的层内连接,主要在于 BM 的层内连接使得其学习过程 ...

  5. Python 网络爬虫与信息获取(一)—— requests 库的网络爬虫

    1. 安装与测试 进入 cmd(以管理员权限),使用 pip 工具,pip install requests 进行安装: 基本用法: >> import requests >> ...

  6. 【hdu 1517】A Multiplication Game

    Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s) ...

  7. tensorflow 的使用流程

    1. optimizer.minimize 与 global_step optimizer = tf.train.**(learning_rate) global_step = tf.Variable ...

  8. 电子商务系统的设计与实现(十三):分页组件,从前到后,从JS到Java

    一.概述   学习实践Web开发5年多了,直到今天,我才算真正实现了最基本最常用的分页组件. 包括:    a.前端JS异步加载并渲染:    b.前端JSP.Freemarker.Struts标签渲 ...

  9. General-Purpose Operating System Protection Profile

    1 Protection Profile Introduction   This document defines the security functionality expected to be ...

  10. dotnet core 使用 sqlite 部署到 Centos 服务器

    原文:dotnet core 使用 sqlite 部署到 Centos 服务器 本文告诉大家如何创建一个 asp dotnet core 程序,这个程序使用 sqlite 保存,部署程序到 Cento ...