Language:
Default
Sightseeing
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 7766   Accepted: 2766

Description

Tour operator Your Personal Holiday organises guided bus trips across the Benelux. Every day the bus moves from one city S to another city F. On this way, the tourists in the bus can see the sights
alongside the route travelled. Moreover, the bus makes a number of stops (zero or more) at some beautiful cities, where the tourists get out to see the local sights.

Different groups of tourists may have different preferences for the sights they want to see, and thus for the route to be taken from S to F. Therefore, Your Personal Holiday wants to offer its clients
a choice from many different routes. As hotels have been booked in advance, the starting city Sand the final city F, though, are fixed. Two routes from S to F are
considered different if there is at least one road from a city A to a city B which is part of one route, but not of the other route.

There is a restriction on the routes that the tourists may choose from. To leave enough time for the sightseeing at the stops (and to avoid using too much fuel), the bus has to take a short route from S to F.
It has to be either a route with minimal distance, or a route which is one distance unit longer than the minimal distance. Indeed, by allowing routes that are one distance unit longer, the tourists may have more choice than by restricting them to exactly the
minimal routes. This enhances the impression of a personal holiday.

For example, for the above road map, there are two minimal routes from S = 1 to F = 5: 1 → 2 → 5 and 1 → 3 → 5, both of length 6. There is one route that is one distance unit longer: 1
→ 3 → 4 → 5, of length 7.

Now, given a (partial) road map of the Benelux and two cities S and F, tour operator Your Personal Holiday likes to know how many different routes it can offer to its clients, under the above restriction
on the route length.

Input

The first line of the input file contains a single number: the number of test cases to follow. Each test case has the following format:

  • One line with two integers N and M, separated by a single space, with 2 ≤ N ≤ 1,000 and 1 ≤ M ≤ 10, 000: the number of cities and
    the number of roads in the road map.

  • M lines, each with three integers AB and L, separated by single spaces, with 1 ≤ AB ≤ NA ≠ B and
    1 ≤ L ≤ 1,000, describing a road from city A to city B with length L.

    The roads are unidirectional. Hence, if there is a road from A to B, then there is not necessarily also a road from B to A. There may be different
    roads from a city A to a city B.

  • One line with two integers S and F, separated by a single space, with 1 ≤ SF ≤ N and S ≠ F:
    the starting city and the final city of the route.

    There will be at least one route from S to F.

Output

For every test case in the input file, the output should contain a single number, on a single line: the number of routes of minimal length or one distance unit longer. Test cases are such, that this number is at most 109 = 1,000,000,000.

Sample Input

2
5 8
1 2 3
1 3 2
1 4 5
2 3 1
2 5 3
3 4 2
3 5 4
4 5 3
1 5
5 6
2 3 1
3 2 1
3 1 10
4 5 2
5 2 7
5 2 7
4 1

Sample Output

3
2

Hint

The first test case above corresponds to the picture in the problem description.

Source

题意:

旅行团从S地出发到达T地。为了省油要求尽量走最短路径或比最短路径长1单位距离的路径。求满足条件的路径条数

解题思路:

相信最短路非常easy求出来的,主要是次短路怎样求出???

我们能够先求出从S到T的次短路的距离。然后推断这个距离与最短距离是否相差为一?所以我们的任务就变成了求解次短路和最短路的问题。

(s。u,v)代表从s——v的最短路,u是中间一个必经点。

我们先看看最短路和次短路的比較:

①(s,u,v)最短路=到达前一个点u的最短路+(u。v)的最短路。

而最短路求解有两种情况:

①(s。u。v)次短路=到达前一个点u的次短路+(u。v)的最短路。

②(s,u,v)次短路=到达前一个点u的最短路+(u,v)的次短路。

所以根据次短路的求解条件。能够在求解最短路的时候求解次短路。

我们用:d[ v ][ 0 ]代表最短路,d[ v ] [ 1 ]代表次短路。

(一)假设从s—u的最短路加上(u,v)权值的距离小于原来的d[ v ][ 0 ] ,我们就可把次短路d[ v ][ 1 ] 的值更新为d[ v ][ 0 ]。就该题而言,此时能够把次短路的条数也更新为这个点的最短路的条数;把当前最短路d[ v ][ 0 ]的值更新成最小的,和原来最短路的松弛操作是一样的。

(二)假设从s—u的最短路加上(u。v)权值的距离大于原来的d[ v ][ 0 ],这就说明这条路路径就可能是一条次短路,那我们须要推断这条路的值dist。和原来的次短路的值d[ v ][1]进行比較!

①假设它比原来的次短路要大,直接跳过。

②假设它比原来的次短路要小,那么我们就须要更新最短路的长度。

③假设与原来的次短路相等。说明我们的次短路有还有一种(这里并不一定是仅仅有1种)方法能够到达终点v。这里要加的种类是:原来到v点的次短路的条数+到u点的次短路(或者最短路。(u。v)并不知道是不是一定是最短路,假设是次短路,那么此时加的就是到u的最短路)的条数。

次短路的情况已经分析出来,最短路的情况是比較easy得出了的。和Dijkstra操作正常的松弛操作就能够了。只是本题让求路径条数。所以要在松弛操作出现相等情况时进行相加操作。这一点比較简单,不在分析,具体看代码。

  AC代码:

#include <stdio.h>
#include <math.h>
#include <vector>
#include <queue>
#include <string>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <algorithm>
#define INF 0x3f3f3f3f using namespace std; const int MAXN = 10010;
const int MAXM = 100010; struct Edge
{
int from;
int to;
int w;
int next;
}edge[MAXN]; int tot;
int head[MAXM]; void addEdge(int u,int v,int w)
{
edge[tot].from=u;
edge[tot].to=v;
edge[tot].w=w;
edge[tot].next=head[u];
head[u]=tot++;
} int d[MAXM][2];//记录最短路、次短路距离。 int c[MAXN][2];//记录最短路、次短路路径条数。
int vis[MAXN][2];//记录最短路、次短路时该点是否被訪问过。
int N,M; void Dijkstra(int s)
{
int flag;
int k;
for(int i=1;i<=N;i++){
c[i][0]=c[i][1]=0;
d[i][0]=d[i][1]=INF;
vis[i][0]=vis[i][1]=0;
}
d[s][0]=0;
c[s][0]=1;
int min_dist=INF;
while(true){
int v=-1;
for(int i=1;i<=N;i++){ //我们并不能确定取出的最小值的就一定是最短路的点
for(int j=0;j<2;j++){//所以要遍历次短和最短的点。
if(!vis[i][j]&&(v==-1||d[i][j]<d[v][k])){
v=i;
k=j;//记录这个点是次短还是最短
}
}
}
if(v==-1) break;
vis[v][k]=1;
for(int i=head[v];i!=-1;i=edge[i].next){
int j=edge[i].to;
int dist=d[v][k]+edge[i].w;;
if(dist<d[j][0]){//dist小于最短路径长。 d[j][1]=d[j][0];//次短路径长
c[j][1]=c[j][0];//次短路径路径数目
d[j][0]=dist;//最短路径长
c[j][0]=c[v][k];//最短路径路径数目
}
else if(dist==d[j][0]){//dist等于最短路径长:
c[j][0]+=c[v][k];//最短路径路径数目
}
else if(dist<d[j][1]){//dist大于最短路径长且小于次短路径长:
d[j][1]=dist;//次短路径长
c[j][1]=c[v][k];//次短路径路径数目
}
else if(dist==d[j][1]){//dist等于次短路径长:
c[j][1]+=c[v][k];//次短路径路径数目
}
}
}
} int main()
{
int t;
scanf("%d",&t);
while(t--){
tot=0;
memset(head,-1,sizeof(head));
scanf("%d%d",&N,&M);
int u,v,w;
for(int i=0;i<M;i++){
scanf("%d%d%d",&u,&v,&w);
addEdge(u,v,w);
}
int s,g;
scanf("%d%d",&s,&g);
Dijkstra(s);
int res=c[g][0];
if(d[g][1]==d[g][0]+1){
res+=c[g][1];
}
printf("%d\n",res);
}
return 0;
}

【Dijkstra+邻接表求次短路】POJ Sightseeing 3463的更多相关文章

  1. POJ - 3255 SPFA+邻接表求次短路径

    题意:给出m条边 , n个顶点,u [ i ]到v [ i ] 的距离w [ i ],求除了最短路的那条最短的边的长度. 思路:之前有做过相似的题,使用迪杰斯特拉算法求单源最短路径,并且记录路径,枚举 ...

  2. E - Easy Dijkstra Problem(求最短路)

    Description Determine the shortest path between the specified vertices in the graph given in the inp ...

  3. Floyd && Dijkstra +邻接表 +链式前向星(真题讲解来源:城市路)

    1381:城市路(Dijkstra) 时间限制: 1000 ms         内存限制: 65536 KB提交数: 4066     通过数: 1163 [题目描述] 罗老师被邀请参加一个舞会,是 ...

  4. HDU 1688 Sightseeing&HDU 3191 How Many Paths Are There(Dijkstra变形求次短路条数)

    Sightseeing Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Tota ...

  5. HDOJ 2544 最短路(最短路径 dijkstra算法,SPFA邻接表实现,floyd算法)

    最短路 Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  6. USACO 2008 January Silver Telephone Lines /// 二分最短路 邻接表dijkstra oj22924

    题目大意: 一共有N (1 ≤ N ≤ 1,000)个电线杆,有P P (1 ≤ P ≤ 10,000)对电线杆是可以连接的, 用几条线连接在一起的电线杆之间都可相互通信,现在想要使得电线杆1和电线杆 ...

  7. HDU 1874 畅通工程续(最短路/spfa Dijkstra 邻接矩阵+邻接表)

    题目链接: 传送门 畅通工程续 Time Limit: 1000MS     Memory Limit: 65536K Description 某省自从实行了很多年的畅通工程计划后,终于修建了很多路. ...

  8. POJ 1511 - Invitation Cards 邻接表 Dijkstra堆优化

    昨天的题太水了,堆优化跑的不爽,今天换了一个题,1000000个点,1000000条边= = 试一试邻接表 写的过程中遇到了一些问题,由于习惯于把数据结构封装在 struct 里,结果 int [10 ...

  9. POJ - 3037-Skiing(邻接表+Dijkstra)

    Bessie and the rest of Farmer John's cows are taking a trip this winter to go skiing. One day Bessie ...

随机推荐

  1. 40.lombok在IntelliJ IDEA下的使用

    转自:https://www.cnblogs.com/yjmyzz/p/lombok-with-intellij-idea.html lombok是一款可以精减java代码.提升开发人员生产效率的辅助 ...

  2. git仓库搭建

    第一步安装git [root@Centos-node2 ~]# yum -y install git 第二步创建git用户 [root@Centos-node2 ~]# useradd git [ro ...

  3. solr6.3+tomcat8报错HTTP Status 403 – Forbidden解决办法

    注释掉tomcat下solr项目web.xml中的如下这段代码即可:

  4. Emgucv 图像操作笔记

    这里记下一些学习过程中的心得和技巧.我用VS2008,C#的平台进行编写. 1.将图片载入PictureBox的方法: Image<Bgr, byte> img = new Image&l ...

  5. Eclipse导出Library

         在工作中遇到开发SDK,记录下导出Library的过程. 1.导出   选中项目>属性>Android  配置Is library例如以下图: 选中项目>导出>JAR ...

  6. iOS_06_Mac os X

    Mac os X 系统简介 * 苹果公司专门为苹果电脑设计的操作系统. * 以坚如磐石的UNIX为基础,既简单易用且功能强大. * x 是一个罗马数字正式的发音位“十”(ten),连续了先前的Mac ...

  7. JS里的map与forEach遍历

    map 返回一个新数组,数组中的元素为原始数组元素调用函数处理后的值. var numbers = [3,2,6,3] function func(num){ return num * documen ...

  8. 【CS Round #48 (Div. 2 only)】Water Volume

    [链接]h在这里写链接 [题意] 在这里写题意 [题解] 枚举0在哪个位置就好. [错的次数] 0 [反思] 在这了写反思 [代码] #include <bits/stdc++.h> us ...

  9. Spring Boot 2.x 使用 jpa 连接 mysql

    在spring boot网站上生成一个项目,如图: 我使用的是Maven项目,java使用是jdk8(spring boot 2.x必须要jdk8及以上),dependencies分别输入选择 web ...

  10. dp hdu5653 xiaoxin and his watermelon candy

    传送门:点击打开链接 题意:有n个箱子排成一排,有m个炸弹.位置告诉你.如今炸弹的左边伤害和右边伤害能够自己控制,要求 每一个炸弹炸的箱子数的累乘,输出答案取log2并乘以1e6 思路:直接2for ...