cv相关博客文章
收藏些图像处理,机器学习,深度学习方面比较不错的文章,时常学习,复习和膜拜吧。。。
图像方面(传统CV):
1. SIFT特征
https://www.cnblogs.com/wangguchangqing/p/4853263.html
http://shartoo.github.io/SIFT-feature/?FbmNv=5d9f3d0c8ca5090a
https://blog.csdn.net/u010440456/article/details/81483145
2. HOG特征
http://shartoo.github.io/HOG-feature/?FbmNv=5d9f3d48e0647071
https://senitco.github.io/2017/06/10/image-feature-hog/
https://www.cnblogs.com/aoru45/p/9748481.html
https://zhuanlan.zhihu.com/p/40960756
3. 图像金字塔
http://shartoo.github.io/image-pramid/?FbmNv=5d9f3d6e990e41bb
https://zhuanlan.zhihu.com/p/32815143
4. Haar特征
http://shartoo.github.io/img-haar-feature/
https://senitco.github.io/2017/06/15/image-feature-haar/
https://juejin.im/post/5b0e6f83f265da0910791a38
https://blog.csdn.net/zouxy09/article/details/7929570
5.Harris角点
https://www.cnblogs.com/ronny/p/4009425.html
https://senitco.github.io/2017/06/18/image-feature-harris/
https://zhuanlan.zhihu.com/p/42490675
https://zhuanlan.zhihu.com/p/36382429
机器学习方面:
1. Linear Regression
https://zhuanlan.zhihu.com/p/45023349
2. Logistic Regression
https://chenrudan.github.io/blog/2016/01/09/logisticregression.html
https://www.jiqizhixin.com/articles/2018-05-13-3
https://zhuanlan.zhihu.com/p/28408516
3.Neutral Network
https://clyyuanzi.gitbooks.io/julymlnotes/content/dl_nn.html
https://www.cnblogs.com/subconscious/p/5058741.html
神经网络损失函数(loss function):
4. 回归和正则化(Regression and Regularization)
https://www.zhihu.com/question/20924039
https://zhuanlan.zhihu.com/p/29957294
线性回归,逻辑回归和神经网络带正则化的损失函数:
正则化项能减缓梯度的变化:
5. SVM(support vector machine)
拉格朗日乘子法
对偶问题:
KKT条件:
SVM原理:
https://www.jiqizhixin.com/articles/2018-10-17-20
https://www.cnblogs.com/leftnoteasy/archive/2011/05/02/basic-of-svm.html
https://wizardforcel.gitbooks.io/dm-algo-top10/content/svm-1.html
https://blog.csdn.net/v_JULY_v/article/details/7624837
支持向量机的表达式,拉格朗日函数,对偶问题和KKT条件:
软间隔支持向量机的表达式,拉格朗日函数,对偶问题和KKT条件:
支持向量机非线性化的核函数:
SVM使用代码(sklearn包):(线性svm,和采用核函数的非线性SVM)
SVM的python实现: https://blog.csdn.net/laobai1015/article/details/82763033
6. kmeans算法
https://www.csuldw.com/2015/06/03/2015-06-03-ml-algorithm-K-means/
https://www.cnblogs.com/pinard/p/6164214.html
k-Means++
https://zhuanlan.zhihu.com/p/32375430
kmeans和kmeans++ python代码实现:
https://github.com/silence-cho/cv-learning/blob/master/week4/assignment.py
https://github.com/ViperBling/CV_Course/blob/master/Week5/K-Means%2B%2B/K-Means.py
7.KNN(k近邻)算法
https://coolshell.cn/articles/8052.html
https://www.cnblogs.com/ybjourney/p/4702562.html
8.决策树 (Decision tree)
https://www.csuldw.com/2015/05/08/2015-05-08-decision%20tree/
https://lotabout.me/2018/decision-tree/
https://blog.csdn.net/xbinworld/article/details/44660339
信息增益:
信息增益率:
基尼指数:
ID3(信息增益)和C4.5(信息增益率):https://zhuanlan.zhihu.com/p/26760551?utm_source=wechat_session&utm_medium=social&utm_oi=71873182302208
sklearn实现决策树:https://www.v2ex.com/amp/t/544062
9.其他算法
AdaBoost:
https://www.cnblogs.com/pinard/p/6133937.html
https://blog.csdn.net/guyuealian/article/details/70995333
LDA(隐式狄利克雷分布): https://github.com/endymecy/spark-ml-source-analysis/blob/master/%E8%81%9A%E7%B1%BB/LDA/lda.md
朴素贝叶斯:https://www.cnblogs.com/leoo2sk/archive/2010/09/17/naive-bayesian-classifier.html
https://zhuanlan.zhihu.com/p/26262151
深度学习方面
1. overfit/underfit (过拟合和欠拟合)
https://zh.d2l.ai/chapter_deep-learning-basics/underfit-overfit.html
https://zhuanlan.zhihu.com/p/29707029
2. bias and variance (高偏差和高方差)
https://www.jianshu.com/p/a585d5506b1e
https://www.cnblogs.com/hutao722/p/9921788.html
http://nanshu.wang/post/2015-05-17/
http://www.voidcn.com/article/p-tqoebcaa-dq.html
3.卷积
反卷积(Deconv / Transposed Convolution / Fractionally strided conv):
https://www.zhihu.com/question/48279880?sort=created
https://www.zhihu.com/question/48279880/answer/838063090
4. Gradient vanishing and explosion (梯度消失和梯度爆炸)
https://blog.csdn.net/qq_25737169/article/details/78847691
https://codertw.com/%E7%A8%8B%E5%BC%8F%E8%AA%9E%E8%A8%80/583004/
https://zhuanlan.zhihu.com/p/51490163
5.Backward(反向传播)
https://juejin.im/entry/5ac056dc6fb9a028de44d620
https://tigerneil.gitbooks.io/neural-networks-and-deep-learning-zh/content/chapter2.html
https://github.com/INTERMT/BP-Algorithm
https://jdhao.github.io/2016/01/19/back-propagation-in-mlp-explained/
图像分割模型:
1. FCN
https://zhuanlan.zhihu.com/p/62839949
https://zh.gluon.ai/chapter_computer-vision/fcn.html
2.U-Net (E-Net)
https://blog.csdn.net/u012931582/article/details/70215756
https://juejin.im/post/5d63eb7bf265da03e05b2065
https://zhuanlan.zhihu.com/p/31428783
https://zhuanlan.zhihu.com/p/57530767
3. E-Net
https://zhuanlan.zhihu.com/p/39430439
http://hellodfan.com/2018/01/02/%E8%AF%AD%E4%B9%89%E5%88%86%E5%89%B2%E8%AE%BA%E6%96%87-ENet/
https://zhuanlan.zhihu.com/p/31379024
4. Mask-RCNN
https://zhuanlan.zhihu.com/p/37998710
https://zhuanlan.zhihu.com/p/40538057
Image Style Transfer(图像风格转变):
Perceptual Loss: Perceptual Losses for Real-Time Style Transferand Super-Resolution
Feature mimicking: Mimicking Very Efficient Network for Object Detection
Model distillation: Distilling the Knowledge in a Neural Network
Image Enhancement (图像增强):
Learning a Deep Single Image Contrast Enhancerfrom Multi-Exposure Images
A Generic Deep Architecture for Single Image Reflection Removaland Image Smoothing (反射移除)
深度学习框架
caffe教程:
https://blog.csdn.net/m0_38116269/article/details/88119001
https://zhuanlan.zhihu.com/p/24110318
cv相关博客文章的更多相关文章
- 年度十佳 DevOps 博客文章(后篇)
如果说 15 年你还没有将 DevOps 真正应用起来,16 年再不实践也未免太落伍了.在上篇文章中我们了解到 15 年十佳 DevOps 博客文章的第 6-10 名,有没有哪一篇抓住了您的眼球,让您 ...
- 年度十佳 DevOps 博客文章(前篇)
如果说 15 年你还没有将 DevOps 真正应用起来,16 年再不实践也未免太落伍了.国内 ITOM 领军企业 OneAPM 工程师为您翻译整理了,2015 年十佳 DevOps 文章,究竟是不是深 ...
- VM 映像 PowerShell 教学系列博客文章
编辑人员注释:本文章是与Microsoft Azure工程的项目经理Kay Singh共同撰写的 正如我在第一篇博客文章中所承诺的,我又回来了,为大家分步介绍如何在PowerShell中使用VM ...
- HelloDjango 第 08 篇:开发博客文章详情页
作者:HelloGitHub-追梦人物 文中涉及的示例代码,已同步更新到 HelloGitHub-Team 仓库 首页展示的是所有文章的列表,当用户看到感兴趣的文章时,他点击文章的标题或者继续阅读的按 ...
- python:简单爬取自己的一篇博客文章
1.爬取文章地址:https://www.cnblogs.com/Mr-choa/p/12495157.html 爬取文章的标题.具体内容,保存到文章名.txt 代码如下: # 导入requests模 ...
- python爬虫实战之爬取智联职位信息和博客文章信息
1.python爬取招聘信息 简单爬取智联招聘职位信息 # !/usr/bin/env python # -*-coding:utf-8-*- """ @Author ...
- SQL Sever 博客文章目录(2016-07-06更新)
SQL Server方面的博客文章也陆陆续续的写了不少了,顺便也将这些知识点整理.归纳一下下.方便自己和他人查看. MS SQL 数据类型 三大数据库对比研究系列--数据类型 MS SQL 表和视图 ...
- 使用 Microsoft Word 发布博客文章
以 Microsoft Word 2010 为例: 依次选择:文件 -> 保存并发送 -> 发布为博客文章 配置说明:新建账户 的 博客文章 URL 一栏填写 http://rpc.cn ...
- Word 2010发布博客文章
只测试了cnblog 1.新建文件选择word 2010自带的博客文章模板 2.在管理账户中新建一个博客账户,也就是你自己在博客园的账户,博客选其他 3.然后选择下一步,博客的URL在自己的博客设置里 ...
随机推荐
- Mysql踩坑 自动更新的时间只允许有一个
执行如下SQL创建表: CREATE TABLE aa ( a INT, b TIMESTAMP ON UPDATE CURRENT_TIMESTAMP, c TIMESTAMP DEFAULT CU ...
- windows虚拟机性能调整
在通过KVM安装WindowsXP/2003/7/2008操作系统后,由于默认的磁盘驱动(IDE)性能与网卡驱动(RTL8139100M)的性能都极其低下,需要调整,通过加载Redhatvirtio驱 ...
- 牛客练习赛48 C 小w的糖果 (数学,多项式,差分)
牛客练习赛48 C 小w的糖果 (数学,多项式) 链接:https://ac.nowcoder.com/acm/contest/923/C来源:牛客网 题目描述 小w和他的两位队友teito.toki ...
- UTF-8&Unicode,0xC0和0x80是什么?
转载:http://blog.sina.com.cn/s/blog_7c4f3b160101dv4p.html 一个字符串长度统计的代码,如下 int calcLen(const char* _str ...
- 搭建jenkins+python+selenium+robot framework环境
1.安装jenkins 具体参考:https://www.cnblogs.com/dydxw/p/10538103.html 2.下载插件 我是为了方便,把有关python.selenium.robo ...
- TDOA 之数据测试
许久没有更新TDOA了,近期断断续续编写学习,开始测试TDOA数据.记录如下 1 测试场地,如下所示,4个基站摆放位置是一个正方形,变成为1.6m,被测试标签放置正中心. 2 获得原始数据 test_ ...
- Codeforces Round #438 by Sberbank and Barcelona Bootcamp (Div. 1 + Div. 2 combined) A,B,C【真的菜·】
8说了 #include<bits/stdc++.h> using namespace std; #define int long long signed main(){ string s ...
- 元素(element)创建
一.元素创建的三种方式-------元素创建是为了提高用户的体验 1.第一种 document.write("标签代码及内容") <input type="butt ...
- loj #136
最小瓶颈路 做最小生成树是进行特判即可 时间复杂度 n * k #include <bits/stdc++.h> const int N = 1010, M = 1e5 + 10; str ...
- Hdu CRB and Queries(整体二分)
CRB and Queries Time Limit: 6000 MS Memory Limit: 131072 K Problem Description There are N boys in C ...