Elasticsearch没看文档之前,整理的一些知识
1 基础
index -> 数据库
type -> 表
document -> 行
field -> 列
-------------------------------------------------------------------
字段属性
type
String
text -> 可分词,不能聚合
keyword -> 可聚合,不能分词
数值类型
long.integer.short.byte.double.float.half_float.scaled_float
index
true -> 会被索引,默认true
false -> 不会被索引,如设置图片
-------------------------------------------------------------------
创建数据库 a1 分片5 副本1
PUT a1
{
"settings": {
"number_of_shards": 5,
"number_of_replicas": 1
}
}
查看数据库 a1
GET a1
查看所有数据库
GET *
删除数据库 a1
DELETE a1
2 基础
//在 a1 数据库中建表 student
//建立字段 name(类型text 指定分词) age(类型integer)
PUT a1/_mapping/student
{
"properties": {
"name": {
"type": "text",
"analyzer": "ik_max_word"
},
"age": {
"type": "integer"
}
}
}
查看 a1 数据库中建立的表解构
GET a1/_mapping
往表中添加数据
POST a1/student
{
"name":"小米手机",
"age":11
}
查看 a1 数据库的全部数据
_source -> 查询到的数据
_id -> 文档的唯一标识
GET a1/_search
{
"query":{
"match_all": {}
}
}
自定义 _id 为2 的数据
POST a1/student/2
{
"name":"大米手机",
"age":22
}
如果添加字段 address 不存在就会自动创建
POST a1/student/3
{
"name":"小米电视4K",
"age":33,
"address":"安徽阜阳晶宫大酒店101"
}
修改数据如果对应 id 存在则删除之前的再添加 不存在则添加
PUT a1/student/4
{
"name":"小米电脑",
"age":44
}
删除id=4的文档
DELETE a1/student/4
3 基本查询
基本查询
match_all
查询数据库 a1 所有数据
GET a1/_search
{
"query": {
"match_all": {}
}
}
---
{
"took": 4,//查询耗时4毫秒
"timed_out": false,//没有超时
"_shards": {//分片
"total": 5,//一共5个
"successful": 5,//成功5个
"skipped": 0,//跳过0个
"failed": 0//失败0个
},
"hits": {//查询到的数据
"total": 3,//查询总条数
"max_score": 1,//最大得分1
"hits": [//查询到的数据所有文档
{//一个文档
"_index": "a1",//数据库
"_type": "student",//表
"_id": "2",//注解 每个文档的唯一标识
"_score": 1,//得分是1 满分是最大得分
"_source": {//查询到的数据 包括 字段 字段值 -> k:v
"name": "大米手机",
"age": 22
}
},
{
"_index": "a1",
"_type": "student",
"_id": "CA2Yqm0Bmr19jrNQ7nRL",
"_score": 1,
"_source": {
"name": "小米手机",
"age": 11
}
},
{
"_index": "a1",
"_type": "student",
"_id": "3",
"_score": 1,
"_source": {
"name": "小米电视4K",
"age": 33,
"address": "安徽阜阳小米酒店101"
}
}
]
}
}
---
match
查询 name=小米电视
因为使用了分词,默认是or 所以可匹配 -> 小米 or 电视
GET a1/_search
{
"query": {
"match": {
"name": "小米电视"
}
}
}
查询分词,指定and可匹配 -> 小米 and 电视
GET a1/_search
{
"query": {
"match": {
"name": {
"query": "小米电视",
"operator": "and"
}
}
}
}
可以指定分词的个数,
1 -> 匹配任意一个词
2 -> 匹配任意两个词
3 -> 因为超过了分词量,所以匹配不到
GET a1/_search
{
"query": {
"match": {
"name": {
"query": "小米电视",
"minimum_should_match": 1
}
}
}
}
3x0.66=1.98,因为1.98<2 所以匹配任意一个
GET a1/_search
{
"query": {
"match": {
"name": {
"query": "小米智能电视",
"minimum_should_match": "66%"
}
}
}
}
3x0.67=2.01,因为2.01>2 所以匹配任意两个
GET a1/_search
{
"query": {
"match": {
"name": {
"query": "小米智能电视",
"minimum_should_match": "67%"
}
}
}
}
查询 name 或 address 含有"小米"这个词
GET a1/_search
{
"query": {
"multi_match": {
"query": "小米",
"fields": ["name","address"]
}
}
}
精准匹配 age=11
GET a1/_search
{
"query": {
"term": {
"age": {
"value": 11
}
}
}
}
多条精准匹配 age in [11,22,77]
GET a1/_search
{
"query": {
"terms": {
"age": [11,22,77]
}
}
}
4 结果过滤
结果过滤
查询字段只显示 name age
并且查询 age in [11,22,77]
GET a1/_search
{
"_source": ["name","age"],
"query": {
"terms": {
"age": [11,22,77]
}
}
}
查询所有 只显示"address"字段,没有此字段的显示空
GET a1/_search
{
"_source": {
"includes": ["address"]
}
}
查询所有只除了"address"字段,其他全显示
GET a1/_search
{
"_source": {
"excludes": ["address"]
}
}
5 高级查询
高级查询
与 must[{1},{2}] 满足所有
查询"name"分词有"小米"并且"age"等于11或者22
GET a1/_search
{
"query": {
"bool": {
"must": [
{
"match": {
"name": "小米"
}
},
{
"terms": {
"age": [11,22]
}
}
]
}
}
}
非 must_not[{1},{2}] 不满足所有
查询"name"分词没有"小米并且"age"不等于11或者22
GET a1/_search
{
"query": {
"bool": {
"must_not": [
{
"match": {
"name": "小米"
}
},
{
"terms": {
"age": [11,22]
}
}
]
}
}
}
或 should[{1},{2}] 满足任意一个
GET a1/_search
{
"query": {
"bool": {
"should": [
{
"match": {
"name": "小米"
}
},
{
"terms": {
"age": [11,22]
}
}
]
}
}
}
> >= < <=
lt lte gt gte
查询 10<=age<30
GET a1/_search
{
"query": {
"range": {
"age": {
"gte": 10,
"lt": 30
}
}
}
}
6 过滤
过滤
查询"name"=小米并且10<=age<=20
GET a1/_search
{
"query": {
"bool": {
"must": [
{
"match": {
"name": "小米"
}
}
],
"filter": {
"range": {
"age": {
"gte": 10,
"lte": 20
}
}
}
}
}
}
排序
查询"name"=小米并按照年龄降序
GET a1/_search
{
"query": {
"match": {
"name": "小米"
}
},
"sort": [
{
"age": {
"order": "desc"
}
}
]
}
7 聚合
聚合
select count(color)//指标 -> 对桶计算
from table
group by color//桶 -> 满足条件的文档集合
1.通过国家划分文档(桶)
2.然后通过性别划分每个国家(桶)
3.然后通过年龄区间划分每种性别(桶)
4.最后,为每个年龄区间计算平均薪酬(指标)
所有的这些都在一个请求内完成并且只遍历一次数据!
PUT /cars
{
"settings": {
"number_of_shards": 1,
"number_of_replicas": 0
},
"mappings": {
"transactions": {
"properties": {
"color": {
"type": "keyword"
},
"make": {
"type": "keyword"
}
}
}
}
}
执行这一条 先执行上一条
POST /cars/transactions/_bulk
{ "index": {}}
{ "price" : 10000, "color" : "red", "make" : "honda", "sold" : "2014-10-28" }
{ "index": {}}
{ "price" : 20000, "color" : "red", "make" : "honda", "sold" : "2014-11-05" }
{ "index": {}}
{ "price" : 30000, "color" : "green", "make" : "ford", "sold" : "2014-05-18" }
{ "index": {}}
{ "price" : 15000, "color" : "blue", "make" : "toyota", "sold" : "2014-07-02" }
{ "index": {}}
{ "price" : 12000, "color" : "green", "make" : "toyota", "sold" : "2014-08-19" }
{ "index": {}}
{ "price" : 20000, "color" : "red", "make" : "honda", "sold" : "2014-11-05" }
{ "index": {}}
{ "price" : 80000, "color" : "red", "make" : "bmw", "sold" : "2014-01-01" }
{ "index": {}}
{ "price" : 25000, "color" : "blue", "make" : "ford", "sold" : "2014-02-12" }
---1 -> 尝试聚合 terms
按照"color"聚合 聚合名称为"popular_colors"
GET /cars/_search
{
"size" : 0,
"aggs" : {
"popular_colors" : {
"terms" : {"field" : "color"}
}
}
}
聚合结果 -> 红色汽车卖的最好
hits 结果为空,因为我们设置size:0
aggregations 聚合结果
popular_colors 聚合名称
buckets 桶的集合
key 这个桶对应"color"的值
doc_count 这个桶中文档数量
{
"took": 3,
"timed_out": false,
"_shards": {
"total": 1,
"successful": 1,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 8,//查询到全部8条
"max_score": 0,
"hits": []//显示0条 设置了 size=0
},
"aggregations": {
"popular_colors": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "red",
"doc_count": 4
},
{
"key": "blue",
"doc_count": 2
},
{
"key": "green",
"doc_count": 2
}
]
}
}
}
---2 -> 添加度量指标 avg
对聚合后的桶再进行度量算平均值
GET cars/_search
{
"size": 0,
"aggs": {
"popular_colors": {
"terms": {"field": "color"},
"aggs": {
"avg_price": {
"avg": {"field": "price"}
}
}
}
}
}
聚合结果 -> 红色汽车平均价格最贵
...
"aggregations": {
"popular_colors": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "red",
"doc_count": 4,
"avg_price": {
"value": 32500
}
},
{
"key": "blue",
"doc_count": 2,
"avg_price": {
"value": 20000
}
},
{
"key": "green",
"doc_count": 2,
"avg_price": {
"value": 21000
}
}
]
}
}
...
---3 -> 嵌套桶 terms avg terms
对聚合的结果再次进行聚合,桶嵌套桶
GET /cars/_search
{
"size" : 0,
"aggs" : {
"popular_colors" : {
"terms" : {"field" : "color"},
"aggs":{
"avg_price": {
"avg": {"field": "price"}
},
"maker":{
"terms":{"field":"make"}
}
}
}
}
}
聚合结果 -> 每种颜色的各个车型卖出去多少量
+ 原来的color桶和avg计算我们不变
+ maker:在嵌套的aggs下新添一个桶,叫做maker
+ terms:桶的划分类型依然是词条
+ filed:这里根据make字段进行划分
...
"aggregations": {
"popular_colors": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "red",
"doc_count": 4,
"maker": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "honda",
"doc_count": 3
},
{
"key": "bmw",
"doc_count": 1
}
]
},
"avg_price": {
"value": 32500
}
},
{
"key": "blue",
...
},
{
"key": "green",
...
}
]
}
}
...
---4 -> 最后的修改 terms avg min max terms terms
1>
一共有多少种颜色
每种颜色卖多少辆车
每种颜色平均价格是多少
2>
每种颜色都是什么车
每种车有多少辆
3>
每种车价格是多少
GET /cars/_search
{
"size" : 0,
"aggs" : {
"popular_colors" : {
"terms" : { "field" : "color"},
"aggs":{
"avg_price": {
"avg": { "field": "price" }
},
"min_price":{
"min": {"field": "price"}
},
"max_price":{
"max": {"field": "price"}
},
"maker":{
"terms":{"field":"make"},
"aggs": {
"a_price": {
"terms": {"field": "price" }
}
}
}
}
}
}
}
聚合结果
其中红色汽车4辆
红色最贵80000 最便宜10000
其中3辆honda本田 1辆bmw
其中本田20000 卖2辆 本田10000卖1辆 宝马bmw80000 卖一辆
...
"aggregations": {
"popular_colors": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "red",
"doc_count": 4,
"max_price": {
"value": 80000
},
"min_price": {
"value": 10000
},
"maker": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "honda",
"doc_count": 3,
"a_price": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": 20000,
"doc_count": 2
},
{
"key": 10000,
"doc_count": 1
}
]
}
},
{
"key": "bmw",
"doc_count": 1,
"a_price": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": 80000,
"doc_count": 1
}
]
}
}
]
},
"avg_price": {
"value": 32500
}
},
{
"key": "blue",
...
},
{
"key": "green",
...
}
]
}
}
...
---5 -> 条形图 histogram interval
聚合名称"a_price"
根据字段"price"进行5000一次分割
从最小到最大,例如
[-1,1,4999,5000,5001,10000,10001] ->
[-5000,0) -> -1
[0,5000) -> 1 4999
[5000,10000) -> 5000 5001
[10000,15000) -> 10000 10001
key=0 [0,5000)
key=5000 [5000,10000)
GET /cars/_search
{
"size":0,
"aggs":{
"a_price":{
"histogram": {
"field": "price",
"interval": 5000
}
}
}
}
聚合结果
...
"aggregations": {
"a_price": {
"buckets": [
{
"key": 10000,
"doc_count": 2
},
{
"key": 15000,
"doc_count": 1
},
{
"key": 20000,
"doc_count": 2
},
{
"key": 25000,
"doc_count": 1
},
{
"key": 30000,
"doc_count": 1
},
{
"key": 35000,
"doc_count": 0
},
{
"key": 40000,
"doc_count": 0
},
{
"key": 45000,
"doc_count": 0
},
{
"key": 50000,
"doc_count": 0
},
{
"key": 55000,
"doc_count": 0
},
{
"key": 60000,
"doc_count": 0
},
{
"key": 65000,
"doc_count": 0
},
{
"key": 70000,
"doc_count": 0
},
{
"key": 75000,
"doc_count": 0
},
{
"key": 80000,
"doc_count": 1
}
]
}
}
...
---6 -> 条形图 histogram interval min_doc_count
最少有一条记录
GET /cars/_search
{
"size":0,
"aggs":{
"a_price":{
"histogram": {
"field": "price",
"interval": 5000,
"min_doc_count": 1
}
}
}
}
聚合结果
...
"aggregations": {
"a_price": {
"buckets": [
{
"key": 10000,
"doc_count": 2
},
{
"key": 15000,
"doc_count": 1
},
{
"key": 20000,
"doc_count": 2
},
{
"key": 25000,
"doc_count": 1
},
{
"key": 30000,
"doc_count": 1
},
{
"key": 80000,
"doc_count": 1
}
]
}
}
...
---7 -> 按时间统计 date_histogram interval format min_doc_count
按月分割 至少匹配一条
GET /cars/transactions/_search
{
"size" : 0,
"aggs": {
"sales": {
"date_histogram": {
"field": "sold",
"interval": "month",
"format": "yyyy-MM-dd",
"min_doc_count": 1
}
}
}
}
聚合结果
...
"aggregations": {
"sales": {
"buckets": [
{
"key_as_string": "2014-01-01",
"key": 1388534400000,
"doc_count": 1
},
{
"key_as_string": "2014-02-01",
"key": 1391212800000,
"doc_count": 1
},
{
"key_as_string": "2014-05-01",
"key": 1398902400000,
"doc_count": 1
},
{
"key_as_string": "2014-07-01",
"key": 1404172800000,
"doc_count": 1
},
{
"key_as_string": "2014-08-01",
"key": 1406851200000,
"doc_count": 1
},
{
"key_as_string": "2014-10-01",
"key": 1412121600000,
"doc_count": 1
},
{
"key_as_string": "2014-11-01",
"key": 1414800000000,
"doc_count": 2
}
]
}
}
...
---8 -> 返回空桶 date_histogram interval format min_doc_count extended_bounds min max
按月分割查询整年的数据 查询一共12条 用于做统计图之类的
如果数据只到11月 则不会显示12月,就需要加extended_bounds用来限制整年
GET /cars/transactions/_search
{
"size" : 0,
"aggs": {
"sales": {
"date_histogram": {
"field": "sold",
"interval": "month",
"format": "yyyy-MM-dd",
"min_doc_count" : 0,
"extended_bounds" : {
"min" : "2014-01-01",
"max" : "2014-12-31"
}
}
}
}
}
聚合结果
...
"aggregations": {
"sales": {
"buckets": [
{
"key_as_string": "2014-01-01",
"key": 1388534400000,
"doc_count": 1
},
{
"key_as_string": "2014-02-01",
"key": 1391212800000,
"doc_count": 1
},
{
"key_as_string": "2014-03-01",
"key": 1393632000000,
"doc_count": 0
},
{
"key_as_string": "2014-04-01",
"key": 1396310400000,
"doc_count": 0
},
{
"key_as_string": "2014-05-01",
"key": 1398902400000,
"doc_count": 1
},
{
"key_as_string": "2014-06-01",
"key": 1401580800000,
"doc_count": 0
},
{
"key_as_string": "2014-07-01",
"key": 1404172800000,
"doc_count": 1
},
{
"key_as_string": "2014-08-01",
"key": 1406851200000,
"doc_count": 1
},
{
"key_as_string": "2014-09-01",
"key": 1409529600000,
"doc_count": 0
},
{
"key_as_string": "2014-10-01",
"key": 1412121600000,
"doc_count": 1
},
{
"key_as_string": "2014-11-01",
"key": 1414800000000,
"doc_count": 2
},
{
"key_as_string": "2014-12-01",
"key": 1417392000000,
"doc_count": 0
}
]
}
}
...
---9 -> 时间统计 扩展案例 date_histogram interval format min_doc_count extended_bounds min max terms sum
按照季度进行划分全年 分为4个季度
每个季度卖了多少钱
每个季度每种车卖了多少辆 每种车卖多少钱
GET /cars/transactions/_search
{
"size" : 0,
"aggs": {
"sales": {
"date_histogram": {
"field": "sold",
"interval": "quarter",
"format": "yyyy-MM-dd",
"min_doc_count" : 0,
"extended_bounds" : {
"min" : "2014-01-01",
"max" : "2014-12-31"
}
},
"aggs": {
"per_make_sum": {
"terms": {"field": "make"},
"aggs": {
"sum_price": {"sum": { "field": "price" }}
}
},
"total_sum": {"sum": { "field": "price" }}
}
}
}
}
聚合结果
第一季度[2014-01-01,2014-04-01) 共卖了2辆车 卖了105000
其中1辆bmw宝马 80000 1辆ford福特 25000
...
"aggregations": {
"sales": {
"buckets": [
{
"key_as_string": "2014-01-01",
"key": 1388534400000,
"doc_count": 2,
"per_make_sum": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "bmw",
"doc_count": 1,
"sum_price": {
"value": 80000
}
},
{
"key": "ford",
"doc_count": 1,
"sum_price": {
"value": 25000
}
}
]
},
"total_sum": {
"value": 105000
}
},
{
"key_as_string": "2014-04-01",
...
},
{
"key_as_string": "2014-07-01",
...
},
{
"key_as_string": "2014-10-01",
...
}
]
}
}
...
---10 -> stats 包括 count min max avg sum
GET cars/_search
{
"size": 0,
"aggs": {
"price": {
"stats": {"field": "price"}
}
}
}
聚合结果
...
"aggregations": {
"price": {
"count": 8,
"min": 10000,
"max": 80000,
"avg": 26500,
"sum": 212000
}
}
...
8 聚合
GET /cars/transactions/_search
{
"size" : 0,
"aggs" : {
"colors" : {
"terms" : {"field" : "color"}
}
}
}
上等价于下
GET /cars/transactions/_search
{
"size" : 0,
"query" : {
"match_all" : {}
},
"aggs" : {
"colors" : {
"terms" : {"field" : "color"}
}
}
}
---1 -> 范围限定的聚合 query match aggs avg
对查询的结果进行聚合
GET cars/_search
{
"size": 0,
"query": {
"match": {"make": "ford"}
},
"aggs": {
"avg_1": {
"avg": {"field": "price"}
}
}
}
聚合结果
...
"aggregations": {
"avg_1": {
"value": 27500//对查询到的结果进行求平均值
}
}
...
---2 -> 范围限定的聚合 query match aggs avg global aggs avg
对查询的结果进行聚合 并对全部数据也进行聚合
GET cars/_search
{
"size": 0,
"query": {
"match": {"make": "ford"}
},
"aggs": {
"avg_1": {//对查询的结果进行聚合
"avg": {"field": "price"}
},
"all":{//聚合桶名称
"global": {},
"aggs": {
"avg_2": {//对全部数据求平均值的桶
"avg": {"field": "price"}
}
}
}
}
}
聚合结果
...
"aggregations": {
"all": {
"doc_count": 8,
"avg_2": {
"value": 26500
}
},
"avg_1": {
"value": 27500
}
}
...
---3 -> 过滤 query constant_score filter range aggs avg
使用"constant_score"的"filter"进行过滤,再对过滤的结果进行聚合
GET /cars/transactions/_search
{
"size" : 0,
"query" : {
"constant_score": {
"filter": {
"range": {
"price": {"gte": 30000}
}
}
}
},
"aggs" : {
"single_avg_price": {
"avg" : { "field" : "price" }
}
}
}
聚合结果
...
"aggregations": {
"single_avg_price": {
"value": 55000
}
}
...
---4 -> 过滤桶 query match aggs filter range aggs avg
对查询结果进行过滤(现在时间的前一个月)再进行计算平均值
GET /cars/transactions/_search
{
"size" : 0,
"query":{
"match": {"make": "ford"}
},
"aggs":{
"recent_sales": {
"filter": {
"range": {"sold": {"from": "now-1M"}}
},
"aggs": {
"average_price":{"avg": {"field": "price"}}
}
}
}
}
聚合结果
...
"aggregations": {
"recent_sales": {
"meta": {},
"doc_count": 0,
"average_price": {
"value": null
}
}
}
...
---5 -> 后过滤器 query match post_filter term aggs terms
"post_filter"只影响搜索结果"hits",不影响聚合结果"aggregations"
GET /cars/transactions/_search
{
"size" : 0,
"query": {
"match": {"make": "ford"}
},
"post_filter": {
"term" : {"color" : "green"}
},
"aggs" : {
"all_colors": {
"terms" : { "field" : "color" }
}
}
}
聚合结果
...
"hits": {
"total": 1,//只有一条
"max_score": 0,
"hits": []
},
"aggregations": {
"all_colors": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "blue",
"doc_count": 1
},
{
"key": "green",
"doc_count": 1
}
]
}
}
...
---6 -> 内置排序 aggs terms order _count _term
桶默认按照"doc_count"降序
我们可以使用内置"order"排序
_count
按"doc_count"大小排序。对 terms 、 histogram 、 date_histogram 有效。
_term
按照"key"字母顺序排序。只在 terms 内使用。
_key
按每个桶的键值数值排序(理论上与 _term 类似)。 只在 histogram 和 date_histogram 内使用。
GET cars/_search
{
"size": 0,
"aggs": {
"colors": {
"terms": {
"field": "color",
"order": {
"_count": "asc"
}
}
}
}
}
聚合结果
...
"aggregations": {
"colors": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "blue",
"doc_count": 2
},
{
"key": "green",
"doc_count": 2
},
{
"key": "red",
"doc_count": 4
}
]
}
}
...
---7 -> 按度量排序 aggs terms order aggs avg
按照计算的平均价格的桶名称进行平均价格升序
GET /cars/transactions/_search
{
"size" : 0,
"aggs" : {
"makes" : {
"terms" : {
"field" : "make",
"order": {"avg_price" : "asc" }
},
"aggs": {
"avg_price": {"avg": {"field": "price"}}
}
}
}
}
聚合结果
...
"aggregations": {
"makes": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "toyota",
"doc_count": 2,
"avg_price": {
"value": 13500
}
},
{
"key": "honda",
"doc_count": 3,
"avg_price": {
"value": 16666.666666666668
}
},
{
"key": "ford",
"doc_count": 2,
"avg_price": {
"value": 27500
}
},
{
"key": "bmw",
"doc_count": 1,
"avg_price": {
"value": 80000
}
}
]
}
}
...
---8 -> 按度量排序 aggs terms order aggs extended_stats
按照扩展统计的方差进行升序
GET /cars/transactions/_search
{
"size" : 0,
"aggs" : {
"colors" : {
"terms" : {
"field" : "color",
"order": {"stats.variance" : "asc" }
},
"aggs": {
"stats": {"extended_stats": {"field": "price"}}
}
}
}
}
聚合结果
...
"aggregations": {
"colors": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "blue",
"doc_count": 2,
"stats": {
"count": 2,
"min": 15000,
"max": 25000,
"avg": 20000,
"sum": 40000,
"sum_of_squares": 850000000,
"variance": 25000000,
"std_deviation": 5000,
"std_deviation_bounds": {
"upper": 30000,
"lower": 10000
}
}
},
{
"key": "green",
...
},
{
"key": "red",
...
}
]
}
}
...
---9 -> 基于"深度"度量排序 aggs histogram interval order aggs filter terms aggs extended_stats
a2>a3.variance 表示"a2"中的"a3"的"variance"属性
按照价格两万一次分割,过滤了只取"red","green"一共6个文档,并且根据分割块进行价格计算扩展统计,
根据分割每一块的扩展统计的方差来升序排列,并且排除分割内至少数量为1
这里"a1"//单值桶 "a2"//多值桶 "a3"//度量指标
GET cars/_search
{
"size": 0,
"aggs": {
"a1": {
"histogram": {
"field": "price",
"interval": 20000,
"min_doc_count": 1,
"order": {"a2>a3.variance": "asc"}
},
"aggs": {
"a2": {
"filter": {
"terms": {"color": ["red","green"]}
},
"aggs": {
"a3": {
"extended_stats": {"field": "price"}
}
}
}
}
}
}
}
聚合结果
...
"aggregations": {
"a1": {//多值桶
"buckets": [
{
"key": 80000,//[80000,100000)有1条
"doc_count": 1,
"a2": {//单值桶
"doc_count": 1,//[80000,100000) 并且属于["red","green"]有1条
"a3": {
"count": 1,
"min": 80000,
"max": 80000,
"avg": 80000,
"sum": 80000,
"sum_of_squares": 6400000000,
"variance": 0,//属于["red","green"]1条的方差
"std_deviation": 0,
"std_deviation_bounds": {
"upper": 80000,
"lower": 80000
}
}
}
},
{
"key": 0,//[0,20000)有3条
"doc_count": 3,
"a2": {
"doc_count": 2,//[0,20000) 并且属于["red","green"]有2条
"a3": {
...
"variance": 1000000,//属于["red","green"]2条的方差
...
}
}
},
{
"key": 20000,//[20000,40000)有4条
"doc_count": 4,
"a2": {
"doc_count": 3,//[20000,40000) 并且属于["red","green"]有3条
"a3": {
...
"variance": 22222222.22222225,//属于["red","green"]3条的方差
...
}
}
}
]
}
}
...
---10 -> 统计去重后的数量 aggs cardinality
GET /cars/transactions/_search
{
"size" : 0,
"aggs" : {
"distinct_colors" : {
"cardinality" : {"field" : "color"}
}
}
}
聚合结果
...
"aggregations": {
"distinct_colors": {
"value": 3
}
}
...
---11 -> 统计去重后的数量 aggs date_histogram interval min_doc_count aggs cardinality
按日期每个月分割一次,至少一条才显示,每个月根据颜色都去重
GET /cars/transactions/_search
{
"size" : 0,
"aggs" : {
"months" : {
"date_histogram": {
"field": "sold",
"interval": "month",
"min_doc_count": 1
},
"aggs": {
"distinct_colors" : {
"cardinality" : {"field" : "color"}
}
}
}
}
}
聚合结果
...
"aggregations": {
"months": {
"buckets": [
...
{
"key_as_string": "2014-08-01T00:00:00.000Z",
"key": 1406851200000,
"doc_count": 1,
"distinct_colors": {
"value": 1
}
},
{
"key_as_string": "2014-10-01T00:00:00.000Z",
"key": 1412121600000,
"doc_count": 1,
"distinct_colors": {
"value": 1
}
},
{
"key_as_string": "2014-11-01T00:00:00.000Z",
"key": 1414800000000,
"doc_count": 2,
"distinct_colors": {
"value": 1
}
}
]
}
}
...
---12 -> 统计去重后的数量 aggs cardinality precision_threshold
GET /cars/transactions/_search
{
"size" : 0,
"aggs" : {
"distinct_colors" : {
"cardinality" : {
"field" : "color",
"precision_threshold" : 100 //指定精度,范围[0,40000]超过四万也会为四万
}
}
}
}
聚合结果
...
"aggregations": {
"distinct_colors": {
"value": 3
}
}
...
Elasticsearch没看文档之前,整理的一些知识的更多相关文章
- 用Word收集网页中的内容,用文档结构图整理
如何用Word保存网页中的内容 网页中的内容,用什么保存好? 用笔记类软件是个不错的选择,还可以用 Word 保存,这样方便用“文档结构图”来整理网页. 如图:网页收集后用文档结构图进行整理. (图一 ...
- 看文档要看仔细,英语要加强啊... cocos2d-x 的 API 和 对应版本的 cocos2d-js 的 API 没有完全对应
/** * Sets the X rotation (angle) of the node in degrees which performs a horizontal rotational skew ...
- Jeecg社区wiki在开放,最终能够在线看文档啦!!!
Jeecg社区wiki在开放,最终能够在线看文档啦! .! 2014-12-18 scott JEECG jeecg开源社区wiki正式启动了.方便大家看文档 訪问地址是: http://osbaba ...
- python模块之httplib(在py3中功能进一步强大,请详看文档)
# -*- coding: utf-8 -*-#python 27#xiaodeng#python模块之httplib(在py3中功能进一步强大,请详看文档) import httplib#是较为底层 ...
- Elasticsearch 7.x文档基本操作(CRUD)
官方文档:https://www.elastic.co/guide/en/elasticsearch/reference/current/docs.html 1.添加文档 1.1.指定文档ID PUT ...
- elasticsearch 基础 —— 分布式文档存储原理
路由一个文档到一个分片中 当索引一个文档的时候,文档会被存储到一个主分片中. Elasticsearch 如何知道一个文档应该存放到哪个分片中呢?当我们创建文档时,它如何决定这个文档应当被存储在分片 ...
- elasticsearch 官方监控文档 老版但很有用
https://zhaoyanblog.com/page/1?s=elasticsearch 监控每个节点(jvm部分) 操作系统和进程部分 操作系统和进程部分的含义是很清楚的,这里不会描述的很详细. ...
- 关于Elasticsearch单个索引文档最大数量问题
因为ElasticSearch是一个基于Lucene的搜索服务器.Lucene的索引有个难以克服的限制,导致Elasticsearch的单个分片存在最大文档数量限制,一个索引分片的最大文档数量是20亿 ...
- Niagara帮助文档资料整理
1.任何软件额发布都会有说明文档,有的不会附具体实践的操作步骤,存在不懂得问题一般可以通过查看榜文文档解决问题 一些软件的帮助文档是一PDF格式存储在软件安装的目录下面,如Niagar workben ...
随机推荐
- 用Intellij idea搭建solr调试环境
最近在使用solr时,配置会有一些问题,log里面打印出日志了,但是还是不知道发生这样错误的原因.于是想学习一下相关的solr源码,以下是如何搭建solr调试环境步骤. solr调试环境搭建,首先下载 ...
- flask 学习(四)
最近在学“数据库配置”这一部分,试着运行示例5-1的程序时解释器提示出错: $\venv\lib\site-packages\flask_sqlalchemy\__init__.py:800: U s ...
- (转)java8实现对象列表去重
java8实现列表去重,java8的stream和lambda的使用实例 通过普通的方式也可以达到去重的效果,但是借助java8新特性可以很方便的实现列表去重,测试demo如下 实体类: public ...
- Windows下查找文件或文件夹被哪个进程占用
Linux下我们可以使用lsof +D /filepath/,查看到文件被那些进程占用. windows下也会经常遇到文件夹或文件无法删除或无法访问的问题,使用“资源监视器”可以找到占用的进程,可以尝 ...
- 2019.12.05【ABAP随笔】 分组循环(LOOP AT Group) / REDUCE
ABAP 7.40新语法 LOOP AT Group 和 REDUCE *LOOP AT itab result [cond] GROUP BY key ( key1 = dobj1 key2 = d ...
- JavaScript(3):JSON
<!DOCTYPE html> <html> <body> <p>JSON</p> <script> // JSON 值可以是: ...
- (2)网络基础之IP
IP分为IPV4和IPV6. 以下只讲IPV4,IPV6后期会重新分出来 (以下均为个人理解,如果有误,欢迎提出.也希望如果转载,能通知我并注明转载信息,毕竟字也是我一个个码出来的.谢谢) IPV4地 ...
- JAVA师徒架构班 - 带徒模式
(转: http://www.jeecg.org/forum.php?mod=viewthread&tid=2291&extra=page%3D1&page=1) 一个程序员技 ...
- SolidWorks学习笔记7 镜像,阵列
镜像 将特征,面,实体相对于一个平面来复制.修改原来的特征,镜像特征随之改变 阵列 线性阵列 , 在左侧,先激活要阵列的特征,然后点击小柱 然后选择方向1和方向2,该方向的阵列距离和数量(一般使用边线 ...
- Jenkins 远程部署
参考:https://www.cnblogs.com/bookwed/p/4583033.html 准备环境: 本地开发,安装虚拟机,在虚拟机安装Linux服务器 步骤: 1.安装插件,登录到Jenk ...