其实特别好理解,我们只要写一个数据结构(线段树)支持一下操作:

1.插入一个数\(x\)。

2.查询当前数据结构中最小的数的插入编号。

3.删除插入编号为\(x\)的数。




第一眼看成可持久化了

其实就是一个单点修改,区间(全局)查询的线段树。

zkw线段树在普通线段树的基础上进行了优化(卡常神器)。

我们记录每一个点在线段树中叶子节点的编号。这样修改的时候就不用递归下去找了,直接一个while循环pushup上来就完事。

#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 1e5 + 5;
inline ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) last = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
} int n, m, s;
struct Edge
{
int nxt, to, w;
}e[maxn << 1];
int head[maxn], ecnt = -1;
In void addEdge(int x, int y, int w)
{
e[++ecnt] = (Edge){head[x], y, w};
head[x] = ecnt;
} int Min[maxn << 2], id[maxn << 2], pos[maxn << 2];
In void pushup(int now)
{
if(Min[now << 1] <= Min[now << 1 | 1]) Min[now] = Min[now << 1], id[now] = id[now << 1];
else Min[now] = Min[now << 1 | 1], id[now] = id[now << 1 | 1];
}
In void build(int L, int R, int now)
{
if(L == R)
{
Min[now] = INF; id[now] = L;
pos[L] = now;
return;
}
int mid = (L + R) >> 1;
build(L, mid, now << 1), build(mid + 1, R, now << 1 | 1);
pushup(now);
}
In void update(int now, int d)
{
Min[now] = d;
while(now >> 1) pushup(now >> 1), now >>= 1;
} bool in[maxn];
int dis[maxn];
In void dijkstra(int s)
{
Mem(dis, 0x3f), dis[s] = 0;
update(pos[s], dis[s]);
while(Min[1] ^ INF)
{
int now = id[1]; update(pos[now], INF);
if(in[now]) continue;
in[now] = 1;
for(int i = head[now], v; ~i; i = e[i].nxt)
{
if(dis[v = e[i].to] > dis[now] + e[i].w)
{
dis[v] = dis[now] + e[i].w;
update(pos[v], dis[v]);
}
}
}
} int main()
{
Mem(head, -1);
n = read(), m = read(), s = read();
build(1, n, 1);
for(int i = 1; i <= m; ++i)
{
int x = read(), y = read(), w = read();
addEdge(x, y, w);
}
dijkstra(1);
for(int i = 1; i <= n; ++i) write(dis[i]), space; enter;
return 0;
}

dijkstra之zkw线段树优化的更多相关文章

  1. 堆优化/zkw线段树优化 dijkstra

    #include <bits/stdc++.h> using namespace std; const int MAXN = 100005; const int MAXM = 200005 ...

  2. 洛谷P2505||bzoj2750 [HAOI2012]道路 && zkw线段树

    https://www.luogu.org/problemnew/show/P2505 https://www.lydsy.com/JudgeOnline/problem.php?id=2750 神奇 ...

  3. 【Luogu P3371&P4779】【模板】单源最短路径(线段树优化Dijkstra)

    线段树优化$\rm dijkstra$ 线段树每个节点维护$[l,r]$中$dist$最小的点,删除则把该点$dist$赋值为$+\infty$,然后更新该点影响到的线段树上的其他节点即可. 可以得到 ...

  4. 【bzoj3073】[Pa2011]Journeys 线段树优化建图+堆优化Dijkstra

    题目描述 Seter建造了一个很大的星球,他准备建造N个国家和无数双向道路.N个国家很快建造好了,用1..N编号,但是他发现道路实在太多了,他要一条条建简直是不可能的!于是他以如下方式建造道路:(a, ...

  5. 线段树(单标记+离散化+扫描线+双标记)+zkw线段树+权值线段树+主席树及一些例题

    “队列进出图上的方向 线段树区间修改求出总量 可持久留下的迹象 我们 俯身欣赏” ----<膜你抄>     线段树很早就会写了,但一直没有总结,所以偶尔重写又会懵逼,所以还是要总结一下. ...

  6. 线段树和zkw线段树

    作者作为一个蒟蒻,也是最近才自学了线段树,不对的地方欢迎大佬们评论,但是不要喷谢谢 好啦,我们就开始说说线段树吧 线段树是个支持区间操作和查询的东东,平时的话还是蛮实用的 下面以最基本的区间加以及查询 ...

  7. 【bzoj4699】树上的最短路(树剖+线段树优化建图)

    题意 给你一棵 $n$ 个点 $n-1$ 条边的树,每条边有一个通过时间.此外有 $m$ 个传送条件 $(x_1,y_1,x_2,y_2,c)$,表示从 $x_1$ 到 $x_2$ 的简单路径上的点可 ...

  8. G. 神圣的 F2 连接着我们 线段树优化建图+最短路

    这个题目和之前写的一个线段树优化建图是一样的. B - Legacy CodeForces - 787D 线段树优化建图+dij最短路 基本套路 之前这个题目可以相当于一个模板,直接套用就可以了. 不 ...

  9. B - Legacy CodeForces - 787D 线段树优化建图+dij最短路 基本套路

    B - Legacy CodeForces - 787D 这个题目开始看过去还是很简单的,就是一个最短路,但是这个最短路的建图没有那么简单,因为直接的普通建图边太多了,肯定会超时的,所以要用线段树来优 ...

随机推荐

  1. 剑指offer39:平衡二叉树

    1 题目描述 输入一棵二叉树,判断该二叉树是否是平衡二叉树. 2 思路和方法 平衡二叉树,又被称为AVL树(有别于AVL算法),且具有以下性质:它是一 棵空树或它的左右两个子树的高度差的绝对值不超过1 ...

  2. resful规范: 进行数据交换时的代码潜规则

    目前主流的三种web服务交互方案: REST (Representational State Transfer) 表征性状态转移 SOAP (Simple Object Access Protocol ...

  3. S4VM解析

    S4VM解析 2018年08月03日 15:20:59 stringlife 阅读数 1233   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. ...

  4. MongoDB实战读书笔记(一):JavaScript shell操作MongoDB

    1 基本增删改查 基本概念: 数据库:同关系型数据库 集合:类似关系型数据库的表 文档:类似关系型数据库的行 字段:类似关系型数据库的列 操作: insert:新增,若新增数据的主键已经存在,则会抛异 ...

  5. 客户端相关知识学习(十)之app给h5传递数据

    方法一: app可以把参数传到h5的链接里,用类似?xx=xx&xx=xx的形式拼接,js解析参数即可. 方法二: 情况一:app调用h5 原生app都可以对js的function进行触发,前 ...

  6. js重点——作用域——内部原理(二)

    本篇是深入分析和理解作用域的第一篇——内部原理和工作模型. 我们知道作用域是变量,对象,函数可访问的一个范围.这说明了我们需要一套良好的规则来存储变量,之后方便查找.所以我们首先要理解的是在哪里而且怎 ...

  7. CentOS7中使用yum安装Nginx的详细步骤

    1.添加源 rpm -Uvh http://nginx.org/packages/centos/7/noarch/RPMS/nginx-release-centos-7-0.el7.ngx.noarc ...

  8. PXE批量部署安装Linux系统

    PXE介绍 1)Preboot Excution Environment 预启动执行环境 2)Intel公司研发 3)基于Client/Server的网络模式,支持远程主机通过网络从远端服务器下载映 ...

  9. git本地仓库删除后从远程仓库更新代码

    1.$ ssh-agent bash 2.$ ssh-add ~/.ssh/id_rsa_hyp 添加ssh密匙 3.$ git fetch git@github.com:xxx.git master ...

  10. Systemd: Service File Examples

    大多数Linux发行版使用 systemd作为系统服务管理工具. systemctl是systemd的主要命令,用于管理控制服务. 这篇文章中将介绍如何创建允许你使用systemctl命令的sysyt ...