P3038 [USACO11DEC]牧草种植Grass Planting
题目描述
Farmer John has N barren pastures (2 <= N <= 100,000) connected by N-1 bidirectional roads, such that there is exactly one path between any two pastures. Bessie, a cow who loves her grazing time, often complains about how there is no grass on the roads between pastures. Farmer John loves Bessie very much, and today he is finally going to plant grass on the roads. He will do so using a procedure consisting of M steps (1 <= M <= 100,000).
At each step one of two things will happen:
FJ will choose two pastures, and plant a patch of grass along each road in between the two pastures, or,
- Bessie will ask about how many patches of grass on a particular road, and Farmer John must answer her question.
Farmer John is a very poor counter -- help him answer Bessie's questions!
给出一棵n个节点的树,有m个操作,操作为将一条路径上的边权加一或询问某条边的权值。
输入输出格式
输入格式:
* Line 1: Two space-separated integers N and M
* Lines 2..N: Two space-separated integers describing the endpoints of a road.
* Lines N+1..N+M: Line i+1 describes step i. The first character of the line is either P or Q, which describes whether or not FJ is planting grass or simply querying. This is followed by two space-separated integers A_i and B_i (1 <= A_i, B_i <= N) which describe FJ's action or query.
输出格式:
* Lines 1..???: Each line has the answer to a query, appearing in the same order as the queries appear in the input.
输入输出样例
输入样例#1: 复制
4 6
1 4
2 4
3 4
P 2 3
P 1 3
Q 3 4
P 1 4
Q 2 4
Q 1 4
输出样例#1: 复制
2
1
2
//树剖是在点上操作的,这道题是边
//那么怎么把边权转成点权呢?
//根据树的性质可以知道,一个点可以有多个儿子,但是只会有一个爸爸,
//所以我们可以把这个点和它爸爸之间的那条边的边权转移到这个点上来
//用这个点的点权来表示这条边的权值
//因为根节点没有爸爸,所以它不表示任何边权,点权为0
//但是我们怎么样才能不把两个点的公共祖先的权值算进去啊?
//node[fx].s+1? 不行,这是它的重儿子的位置
// 考虑一下,我们在Query或者Modify的时候,都是当x和y同时处于一条链了之后就break
//然后再把这条链加上,最近公共祖先不就是这条链的top嘛!
//所以,我们在while循环外边写node[x].s+1就可以不算上公共祖先了。
//但是也要注意,如果最后是条轻边,我们就要if特判一下,不能让他进线段树查询了
//因为如果是轻边的话,最后的那条链退化成了最近公共祖先这一个点,不能要! #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; const int N=1e5+; int n,m;
int w[N];
int head[N],num_edge;
struct Edge
{
int v,nxt;
}edge[N<<];
struct Node
{
int fa,son;
int dep,top;
int size;
int s,t;
}node[N];
struct TREE
{
TREE *lson,*rson;
int l,r,mid,len;
int num,lazy;
}tree[N<<]; typedef TREE* Tree;
Tree Root,now_node=tree; inline int read()
{
char c=getchar();int num=;
for(;!isdigit(c);c=getchar())
if(c=='P') return ;
else if(c=='Q') return ;
for(;isdigit(c);c=getchar())
num=num*+c-'';
return num;
} inline void add_edge(int u,int v)
{
edge[++num_edge].v=v;
edge[num_edge].nxt=head[u];
head[u]=num_edge;
} void dfs1(int u)
{
node[u].size=;
for(int i=head[u],v;i;i=edge[i].nxt)
{
v=edge[i].v;
if(v==node[u].fa)
continue;
node[v].fa=u;
node[v].dep=node[u].dep+;
dfs1(v);
node[u].size+=node[v].size;
if(node[v].size>node[node[u].son].size)
node[u].son=v;
}
} int bound;
void dfs2(int u,int top)
{
node[u].top=top;
node[u].s=++bound;
if(node[u].son)
{
dfs2(node[u].son,top);
for(int i=head[u],v;i;i=edge[i].nxt)
{
v=edge[i].v;
if(v==node[u].son||v==node[u].fa)
continue;
dfs2(v,v);
}
}
node[u].t=bound;
} void build(Tree &root,int l,int r)
{
root=++now_node;
root->l=l,root->r=r,root->mid=l+r>>,root->len=r-l+;
if(l==r)
return;
build(root->lson,l,root->mid);
build(root->rson,root->mid+,r);
} inline void pushdown(Tree root)
{
if(root->lazy)
{
root->lson->lazy+=root->lazy;
root->rson->lazy+=root->lazy;
root->lson->num+=root->lson->len*root->lazy;
root->rson->num+=root->rson->len*root->lazy;
root->lazy=;
}
} void update(Tree root,int l,int r)
{
if(root->l==l&&r==root->r)
{
root->num+=root->len;
root->lazy+=;
return;
}
pushdown(root);
if(r<=root->mid)
update(root->lson,l,r);
else if(l>root->mid)
update(root->rson,l,r);
else
{
update(root->lson,l,root->mid);
update(root->rson,root->mid+,r);
}
root->num=root->lson->num+root->rson->num;
} int query(Tree root,int l,int r)
{
if(root->l==l&&root->r==r)
return root->num;
pushdown(root);
if(r<=root->mid)
return query(root->lson,l,r);
else if(l>root->mid)
return query(root->rson,l,r);
else
return query(root->lson,l,root->mid)+query(root->rson,root->mid+,r);
} inline void Modify(int x,int y)
{
int fx=node[x].top,fy=node[y].top;
while(fx!=fy)
{
if(node[fx].dep>node[fy].dep)
{
update(Root,node[fx].s,node[x].s);
x=node[fx].fa;
fx=node[x].top;
}
else
{
update(Root,node[fy].s,node[y].s);
y=node[fy].fa;
fy=node[y].top;
}
}
if(x!=y)
{
if(node[x].dep>node[y].dep)
update(Root,node[y].s+,node[x].s);
else
update(Root,node[x].s+,node[y].s);
}
} inline int Query(int x,int y)
{
int fx=node[x].top,fy=node[y].top;
int ans=;
while(fx!=fy)
{
if(node[fx].dep>node[fy].dep)
{
ans+=query(Root,node[fx].s,node[x].s);
x=node[fx].fa;
fx=node[x].top;
}
else
{
ans+=query(Root,node[fy].s,node[y].s);
y=node[fy].fa;
fy=node[y].top;
}
}
if(x!=y)
{
if(node[x].dep>node[y].dep)
return ans+query(Root,node[y].s+,node[x].s);
else
return ans+query(Root,node[x].s+,node[y].s);
}
return ans;
} int opt,u,v;
int main()
{
n=read(),m=read();
for(int i=;i<n;++i)
{
u=read(),v=read();
add_edge(u,v);
add_edge(v,u);
}
dfs1();
dfs2(,);
build(Root,,n);
for(int i=;i<=m;++i)
{
opt=read(),u=read(),v=read();
if(opt==)
Modify(u,v);
else
printf("%d\n",Query(u,v));
}
return ;
}
P3038 [USACO11DEC]牧草种植Grass Planting的更多相关文章
- 洛谷P3038 [USACO11DEC]牧草种植Grass Planting
题目描述 Farmer John has N barren pastures (2 <= N <= 100,000) connected by N-1 bidirectional road ...
- 洛谷 P3038 [USACO11DEC]牧草种植Grass Planting
题目描述 Farmer John has N barren pastures (2 <= N <= 100,000) connected by N-1 bidirectional road ...
- 洛谷 P3038 [USACO11DEC]牧草种植Grass Planting(树链剖分)
题解:仍然是无脑树剖,要注意一下边权,然而这种没有初始边权的题目其实和点权也没什么区别了 代码如下: #include<cstdio> #include<vector> #in ...
- AC日记——[USACO11DEC]牧草种植Grass Planting 洛谷 P3038
题目描述 Farmer John has N barren pastures (2 <= N <= 100,000) connected by N-1 bidirectional road ...
- 树链剖分【p3038】[USACO11DEC]牧草种植Grass Planting
表示看不太清. 概括题意 树上维护区间修改与区间和查询. 很明显树剖裸题,切掉,细节处错误T了好久 TAT 代码 #include<cstdio> #include<cstdlib& ...
- [USACO11DEC]牧草种植Grass Planting
图很丑.明显的树链剖分,需要的操作只有区间修改和区间查询.不过这里是边权,我们怎么把它转成点权呢?对于E(u,v),我们选其深度大的节点,把边权扔给它.因为这是树,所以每个点只有一个父亲,所以每个边权 ...
- 【LuoguP3038/[USACO11DEC]牧草种植Grass Planting】树链剖分+树状数组【树状数组的区间修改与区间查询】
模拟题,可以用树链剖分+线段树维护. 但是学了一个厉害的..树状数组的区间修改与区间查询.. 分割线里面的是转载的: ----------------------------------------- ...
- 洛谷P3038 牧草种植Grass Planting
思路: 首先,这道题的翻译是有问题的(起码现在是),查询的时候应该是查询某一条路径的权值,而不是某条边(坑死我了). 与平常树链剖分题目不同的是,这道题目维护的是边权,而不是点权,那怎么办呢?好像有点 ...
- USACO Grass Planting
洛谷 P3038 [USACO11DEC]牧草种植Grass Planting 洛谷传送门 JDOJ 2282: USACO 2011 Dec Gold 3.Grass Planting JDOJ传送 ...
随机推荐
- linux测试umask
客户需求,由于ftp服务器权限管理需要,测试能否通过修改oracle umask值,达到expdp导出文件权限,导出即是想要的权限. Session [oracle@adg1 ~]$ umask [o ...
- jacascript Ajax 学习之 JQuery-Ajax
jQuery 对 ajax 操作进行了封装,在 jQuery 中 $.ajax() 属性最底层的方法,第2层是 load().$.get() 和 $.post() 方法,第3层是 $.getScrip ...
- flutter从入门到精通五
在flutter的世界里,一切都是Widget,图像,文本,布局模型等等,一切都是Widget flutter中,尽量将Widget放在MaterialApp.其封装了所需要的一些Widget,Mat ...
- CTR预估-GBDT与LR实现
1.来源 本质上 GBDT+LR 是一种具有 stacking 思想的二分类器模型,所以可以用来解决二分类问题.这个方法出自于 Facebook 2014 年的论文 Practical Lessons ...
- Android状态栏和导航栏
1.隐藏状态栏或导航栏 View decordView = getWindow().getDecorView(); /*SYSTEM_UI_FLAG_HIDE_NAVIGATION和SYSTEM_UI ...
- shell 函数的高级用法
函数介绍 linux shell中的函数和大多数编程语言中的函数一样 将相似的任务或者代码封装到函数中,供其他地方调用 语法格式 如何调用函数 shell终端中定义函数 [root@master da ...
- Android笔记(二十二) Android中的GridView
GridView和ListView一样,是Android中比较常见的布局控件,譬如我们的手机桌面其实就是一个GridView. 效果: 实现过程和ListView类似,也是通过Adapter将数据源展 ...
- kali 系统膨胀后如何处理
1.一般使用的kali 安装都是将系统文件全部放在一个总分区中,应用程序会产生临时文件,另外在安装软件的时候会出现 系统框架的不同,但是kali并不会检测该问题,直接当依赖的框架下载,可以是使用命令 ...
- git命令——git rm、git mv
git rm git rm命令官方解释 删除的本质 在git中删除一个文件,本质上是从tracked files中移除对这些文件的跟踪.更具体地说,就是将这些文件从staging area移除.然后c ...
- 【问题】man手册如何查看区分printf命令和printf函数
参考:UNIX / Linux Man Command Example to View Man Pages 今天再看别人博客的时候,先仔细看看printf命令是怎么玩的,于是man手册查了下.结果搜出 ...