题目描述

Farmer John has N barren pastures (2 <= N <= 100,000) connected by N-1 bidirectional roads, such that there is exactly one path between any two pastures. Bessie, a cow who loves her grazing time, often complains about how there is no grass on the roads between pastures. Farmer John loves Bessie very much, and today he is finally going to plant grass on the roads. He will do so using a procedure consisting of M steps (1 <= M <= 100,000).

At each step one of two things will happen:

FJ will choose two pastures, and plant a patch of grass along each road in between the two pastures, or,

  • Bessie will ask about how many patches of grass on a particular road, and Farmer John must answer her question.

Farmer John is a very poor counter -- help him answer Bessie's questions!

给出一棵n个节点的树,有m个操作,操作为将一条路径上的边权加一或询问某条边的权值。

输入输出格式

输入格式:

* Line 1: Two space-separated integers N and M

* Lines 2..N: Two space-separated integers describing the endpoints of a road.

* Lines N+1..N+M: Line i+1 describes step i. The first character of the line is either P or Q, which describes whether or not FJ is planting grass or simply querying. This is followed by two space-separated integers A_i and B_i (1 <= A_i, B_i <= N) which describe FJ's action or query.

输出格式:

* Lines 1..???: Each line has the answer to a query, appearing in the same order as the queries appear in the input.

输入输出样例

输入样例#1: 复制

4 6

1 4

2 4

3 4

P 2 3

P 1 3

Q 3 4

P 1 4

Q 2 4

Q 1 4

输出样例#1: 复制

2

1

2

//树剖是在点上操作的,这道题是边
//那么怎么把边权转成点权呢?
//根据树的性质可以知道,一个点可以有多个儿子,但是只会有一个爸爸,
//所以我们可以把这个点和它爸爸之间的那条边的边权转移到这个点上来
//用这个点的点权来表示这条边的权值
//因为根节点没有爸爸,所以它不表示任何边权,点权为0
//但是我们怎么样才能不把两个点的公共祖先的权值算进去啊?
//node[fx].s+1? 不行,这是它的重儿子的位置
// 考虑一下,我们在Query或者Modify的时候,都是当x和y同时处于一条链了之后就break
//然后再把这条链加上,最近公共祖先不就是这条链的top嘛!
//所以,我们在while循环外边写node[x].s+1就可以不算上公共祖先了。
//但是也要注意,如果最后是条轻边,我们就要if特判一下,不能让他进线段树查询了
//因为如果是轻边的话,最后的那条链退化成了最近公共祖先这一个点,不能要! #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; const int N=1e5+; int n,m;
int w[N];
int head[N],num_edge;
struct Edge
{
int v,nxt;
}edge[N<<];
struct Node
{
int fa,son;
int dep,top;
int size;
int s,t;
}node[N];
struct TREE
{
TREE *lson,*rson;
int l,r,mid,len;
int num,lazy;
}tree[N<<]; typedef TREE* Tree;
Tree Root,now_node=tree; inline int read()
{
char c=getchar();int num=;
for(;!isdigit(c);c=getchar())
if(c=='P') return ;
else if(c=='Q') return ;
for(;isdigit(c);c=getchar())
num=num*+c-'';
return num;
} inline void add_edge(int u,int v)
{
edge[++num_edge].v=v;
edge[num_edge].nxt=head[u];
head[u]=num_edge;
} void dfs1(int u)
{
node[u].size=;
for(int i=head[u],v;i;i=edge[i].nxt)
{
v=edge[i].v;
if(v==node[u].fa)
continue;
node[v].fa=u;
node[v].dep=node[u].dep+;
dfs1(v);
node[u].size+=node[v].size;
if(node[v].size>node[node[u].son].size)
node[u].son=v;
}
} int bound;
void dfs2(int u,int top)
{
node[u].top=top;
node[u].s=++bound;
if(node[u].son)
{
dfs2(node[u].son,top);
for(int i=head[u],v;i;i=edge[i].nxt)
{
v=edge[i].v;
if(v==node[u].son||v==node[u].fa)
continue;
dfs2(v,v);
}
}
node[u].t=bound;
} void build(Tree &root,int l,int r)
{
root=++now_node;
root->l=l,root->r=r,root->mid=l+r>>,root->len=r-l+;
if(l==r)
return;
build(root->lson,l,root->mid);
build(root->rson,root->mid+,r);
} inline void pushdown(Tree root)
{
if(root->lazy)
{
root->lson->lazy+=root->lazy;
root->rson->lazy+=root->lazy;
root->lson->num+=root->lson->len*root->lazy;
root->rson->num+=root->rson->len*root->lazy;
root->lazy=;
}
} void update(Tree root,int l,int r)
{
if(root->l==l&&r==root->r)
{
root->num+=root->len;
root->lazy+=;
return;
}
pushdown(root);
if(r<=root->mid)
update(root->lson,l,r);
else if(l>root->mid)
update(root->rson,l,r);
else
{
update(root->lson,l,root->mid);
update(root->rson,root->mid+,r);
}
root->num=root->lson->num+root->rson->num;
} int query(Tree root,int l,int r)
{
if(root->l==l&&root->r==r)
return root->num;
pushdown(root);
if(r<=root->mid)
return query(root->lson,l,r);
else if(l>root->mid)
return query(root->rson,l,r);
else
return query(root->lson,l,root->mid)+query(root->rson,root->mid+,r);
} inline void Modify(int x,int y)
{
int fx=node[x].top,fy=node[y].top;
while(fx!=fy)
{
if(node[fx].dep>node[fy].dep)
{
update(Root,node[fx].s,node[x].s);
x=node[fx].fa;
fx=node[x].top;
}
else
{
update(Root,node[fy].s,node[y].s);
y=node[fy].fa;
fy=node[y].top;
}
}
if(x!=y)
{
if(node[x].dep>node[y].dep)
update(Root,node[y].s+,node[x].s);
else
update(Root,node[x].s+,node[y].s);
}
} inline int Query(int x,int y)
{
int fx=node[x].top,fy=node[y].top;
int ans=;
while(fx!=fy)
{
if(node[fx].dep>node[fy].dep)
{
ans+=query(Root,node[fx].s,node[x].s);
x=node[fx].fa;
fx=node[x].top;
}
else
{
ans+=query(Root,node[fy].s,node[y].s);
y=node[fy].fa;
fy=node[y].top;
}
}
if(x!=y)
{
if(node[x].dep>node[y].dep)
return ans+query(Root,node[y].s+,node[x].s);
else
return ans+query(Root,node[x].s+,node[y].s);
}
return ans;
} int opt,u,v;
int main()
{
n=read(),m=read();
for(int i=;i<n;++i)
{
u=read(),v=read();
add_edge(u,v);
add_edge(v,u);
}
dfs1();
dfs2(,);
build(Root,,n);
for(int i=;i<=m;++i)
{
opt=read(),u=read(),v=read();
if(opt==)
Modify(u,v);
else
printf("%d\n",Query(u,v));
}
return ;
}

P3038 [USACO11DEC]牧草种植Grass Planting的更多相关文章

  1. 洛谷P3038 [USACO11DEC]牧草种植Grass Planting

    题目描述 Farmer John has N barren pastures (2 <= N <= 100,000) connected by N-1 bidirectional road ...

  2. 洛谷 P3038 [USACO11DEC]牧草种植Grass Planting

    题目描述 Farmer John has N barren pastures (2 <= N <= 100,000) connected by N-1 bidirectional road ...

  3. 洛谷 P3038 [USACO11DEC]牧草种植Grass Planting(树链剖分)

    题解:仍然是无脑树剖,要注意一下边权,然而这种没有初始边权的题目其实和点权也没什么区别了 代码如下: #include<cstdio> #include<vector> #in ...

  4. AC日记——[USACO11DEC]牧草种植Grass Planting 洛谷 P3038

    题目描述 Farmer John has N barren pastures (2 <= N <= 100,000) connected by N-1 bidirectional road ...

  5. 树链剖分【p3038】[USACO11DEC]牧草种植Grass Planting

    表示看不太清. 概括题意 树上维护区间修改与区间和查询. 很明显树剖裸题,切掉,细节处错误T了好久 TAT 代码 #include<cstdio> #include<cstdlib& ...

  6. [USACO11DEC]牧草种植Grass Planting

    图很丑.明显的树链剖分,需要的操作只有区间修改和区间查询.不过这里是边权,我们怎么把它转成点权呢?对于E(u,v),我们选其深度大的节点,把边权扔给它.因为这是树,所以每个点只有一个父亲,所以每个边权 ...

  7. 【LuoguP3038/[USACO11DEC]牧草种植Grass Planting】树链剖分+树状数组【树状数组的区间修改与区间查询】

    模拟题,可以用树链剖分+线段树维护. 但是学了一个厉害的..树状数组的区间修改与区间查询.. 分割线里面的是转载的: ----------------------------------------- ...

  8. 洛谷P3038 牧草种植Grass Planting

    思路: 首先,这道题的翻译是有问题的(起码现在是),查询的时候应该是查询某一条路径的权值,而不是某条边(坑死我了). 与平常树链剖分题目不同的是,这道题目维护的是边权,而不是点权,那怎么办呢?好像有点 ...

  9. USACO Grass Planting

    洛谷 P3038 [USACO11DEC]牧草种植Grass Planting 洛谷传送门 JDOJ 2282: USACO 2011 Dec Gold 3.Grass Planting JDOJ传送 ...

随机推荐

  1. Webpack将静态资源拷贝并压缩至输出文件夹

    就拿Vue项目来说,比如要将src/assets/js下的静态js文件,直接在public/index.html中引用: 这时候没有在项目中引用,不会经过wenpack的loader,也就不会自己打包 ...

  2. Hadoop 求单词count数

    package com.yw.hadoop273; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongW ...

  3. redis哈希表数据类型键的查询和删除命令

    一.查询 命令名称:hget 语法:hget key field 功能:返回哈希表key中给定域field的值 返回值: 给定域的值. 当给定域不存在或是给定key不存在时,返回nil 命令名称:hg ...

  4. gulp删除目标文件中所有的console.log()语句——gulp-strip-debug

    1.安装npm包 npm install --save-dev gulp-strip-debug 2.使用 const gulp = require('gulp'); const stripDebug ...

  5. Spring BeanFactory 与 FactoryBean 的区别

    BeanFactory 和 FactoryBean 都是Spring Beans模块下的接口 BeanFactory是spring简单工厂模式的接口类,spring IOC特性核心类,提供从工厂类中获 ...

  6. js按钮频繁提交解决方案:

    1.封装js: /// 函数节流 xhz.canRun = true; xhz.Throttling = function () { if (!xhz.canRun) { layer.msg('处理中 ...

  7. TextBox 显示横线

    public class Xtxt3 : TextBox { private bool m_underLine; public bool UnderLine { get { return m_unde ...

  8. 【转载】如何自己DIY组装一台台式电脑

    针对很多懂计算机的人员来说,有时候都希望自己DIY组装一台台式机,来达到自己的个性化要求以及省钱.其实自己DIY组装一台电脑也很简单,将相应的CPU处理器.主板.内存条.硬盘.固态硬盘.电脑机箱.屏幕 ...

  9. vue打包后.woff字体文件路径问题处理

    在执行 npm run build 命令打包后,如果出现 .woff 等字体文件找不到的情况 通过设置 vue-style-loader 打包前缀路径解决

  10. nginx 作为静态资源web服务

    Nginx作为静态资源web服务 静态资源web服务-CDN场景 Nginx资源存储中心会把静态资源分发给“北京Nginx”,“湖南Nginx”,“山东Nginx”. 然后北京User发送静态资源请求 ...