2384: [Ceoi2011]Match 1892: Match 1461: 字符串的匹配

题目大意

数据范围


题解

很巧妙的一道题呀。

需要对$KMP$算法有很深的理解才行。

首先我们需要发现,要求的这个东西跟字符串匹配有点像。

我们在单个模式串匹配的时候用到的$KMP$算法,合法匹配条件是两个字符完全相同。

但是这个题本质上就是要求子串离散化之后相同。

如果两个串离散化之后完全相同,等价于一个条件,就是每个数前面比它小的个数通通相等。

这是显然的。

所以我们尝试改变$KMP$的匹配模式,并且用树状数组维护长串的这个值。

先假设,所有数字两两不同。

对于要求离散化后的串,每个位置弄一个$f_i$表示这个串中,第$i$个位置前面有多少个比$b_i$小的。

我们把如图红色位置加入树状数组

然后我们查询$i$位置,有多少比$a_i$小的,跟$f_{nxt[i-1]}$相比。

如果相等表示这个位置可以匹配,如果不能,我们就把

$i-nxt_{i-1}$到$i-nxt_{nxt_{i - 1}}$。

这样就可以了。

如果离散化之后不完全相等的话,我们就考虑维护出来$i$前面和$b_i$相等的有多少个,再查就行了。

代码

#include <bits/stdc++.h>

#define N 1000010 

using namespace std;

int tree[N], a[N], b[N], c[N], rk[N], bfr[N], nxt[N], ans[N];

int n, m;

char *p1, *p2, buf[100000];

#define nc() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF : *p1 ++ )

int rd() {
int x = 0, f = 1;
char c = nc();
while (c < 48) {
if (c == '-')
f = -1;
c = nc();
}
while (c > 47) {
x = (((x << 2) + x) << 1) + (c ^ 48), c = nc();
}
return x * f;
} inline int lowbit(int x) {
return x & (-x);
} void update(int x, int val) {
for (int i = x; i <= m; i += lowbit(i))
tree[i] += val;
} int query(int x) {
int ans = 0;
for (int i = x; i; i -= lowbit(i))
ans += tree[i];
return ans;
} int main() {
n = rd(), m = rd();
for (int i = 1; i <= n; i ++ )
a[i] = rd(), rk[a[i]] = i;
for (int i = 1; i <= n; i ++ )
bfr[i] = query(rk[i]), update(rk[i], 1);
for (int i = 1; i <= m; i ++ )
b[i] = rd(), c[i] = b[i];
memset(tree, 0, sizeof tree); // for (int i = 1; i <= n; i ++ )
// printf("%d ", bfr[i]);
// puts(""); for (int i = 2, j = 0; i <= n; i ++ ) {
while (query(rk[i]) != bfr[j + 1]) {
for (int k = i - j; k < i - nxt[j]; k ++ )
update(rk[k], -1);
j = nxt[j];
}
if (query(rk[i]) == bfr[j + 1]) {
update(rk[i], 1);
j ++ ;
}
nxt[i] = j;
} // for (int i = 1; i <= n; i ++ ) {
// printf("%d ", nxt[i]);
// }
// puts(""); sort(c + 1, c + m + 1);
memset(tree, 0, sizeof tree); for (int i = 1, j = 0; i <= m; i ++ ) {
// printf("i-> %d\n", i);
b[i] = lower_bound(c + 1, c + m + 1, b[i]) - c;
// printf("%d\n", b[i]);
// printf("%d %d %d\n", j, query(b[i]), bfr[j + 1]);
while (j == n || query(b[i]) != bfr[j + 1]) {
for (int k = i - j; k < i - nxt[j]; k ++ ) {
update(b[k], -1);
}
j = nxt[j];
}
if (query(b[i]) == bfr[j + 1]) {
update(b[i], 1);
j ++ ;
}
if(j == n)
ans[ ++ ans[0]] = i - j + 1;
} printf("%d\n", ans[0]);
for (int i = 1; i < ans[0]; i ++ )
printf("%d ",ans[i]);
if(ans[0])
printf("%d\n", ans[ans[0]]);
return 0;
}

小结:好题啊,这个题真的不好想,我看题解都看了半天.......

[bzoj1892][bzoj2384][bzoj1461][Ceoi2011]Match/字符串的匹配_KMP_树状数组的更多相关文章

  1. 【poj 3167】Cow Patterns(字符串--KMP匹配+数据结构--树状数组)

    题意:给2个数字序列 a 和 b ,问按从小到达排序后,a中的哪些子串与b的名次匹配. a 的长度 N≤100,000,b的长度 M≤25,000,数字的大小 K≤25. 解法:[思考]1.X 暴力. ...

  2. BZOJ_1264_[AHOI2006]基因匹配Match_树状数组

    BZOJ_1264_[AHOI2006]基因匹配Match_树状数组 Description 基因匹配(match) 卡卡昨天晚上做梦梦见他和可可来到了另外一个星球,这个星球上生物的DNA序列由无数种 ...

  3. 洛谷P4303 [AHOI2006]基因匹配(树状数组)

    传送门 我已经连这种傻逼题都不会了orz 正常的dp是$O(n^2)$的,枚举第一个数组的$j$,然后第二个数组的$k$,如果相等,则$dp[i]=dp[j]+1$,否则$dp[i]=dp[j]$ 然 ...

  4. 【bzoj2384】[Ceoi2011]Match 特殊匹配条件的KMP+树状数组

    题目描述 给出两个长度分别为n.m的序列A.B,求出B的所有长度为n的连续子序列(子串),满足:序列中第i小的数在序列的Ai位置. 输入 第一行包含两个整数n, m (2≤n≤m≤1000000).  ...

  5. 【BZOJ2384】[Ceoi2011]Match KMP

    [BZOJ2384][Ceoi2011]Match Description 作为新一轮广告大战的一部分,格丁尼亚的一家大公司准备在城市的某处设置公司的标志(logo).公司经理决定用一些整栋的建筑来构 ...

  6. bzoj 1264 [AHOI2006]基因匹配Match(DP+树状数组)

    1264: [AHOI2006]基因匹配Match Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 793  Solved: 503[Submit][S ...

  7. 【BZOJ1264】[AHOI2006]基因匹配Match DP+树状数组

    [BZOJ1264][AHOI2006]基因匹配Match Description 基因匹配(match) 卡卡昨天晚上做梦梦见他和可可来到了另外一个星球,这个星球上生物的DNA序列由无数种碱基排列而 ...

  8. bzoj1264 [AHOI2006]基因匹配Match 树状数组+lcs

    1264: [AHOI2006]基因匹配Match Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1255  Solved: 835[Submit][ ...

  9. BZOJ 1264: [AHOI2006]基因匹配Match 树状数组+DP

    1264: [AHOI2006]基因匹配Match Description 基因匹配(match) 卡卡昨天晚上做梦梦见他和可可来到了另外一个星球,这个星球上生物的DNA序列由无数种碱基排列而成(地球 ...

随机推荐

  1. PHP 字符串索引问题

    php 通过下标获取的是字节,而不是字符!!!!$str{$i} 获取的是第$i个字节, 而不是第$i 个字符!!!哦 No,准确说是第$i+1个字节,因为下标是从0开始的,并且应该使用 []代替{} ...

  2. hdu 3555 Bomb(数位dp入门)

    Bomb Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others) Total Subm ...

  3. ubuntu16.0.4 设置静态ip地址

    由于Ubuntu重启之后,ip很容易改变,可以用以下方式固定ip地址 1.设置ip地址 vi /etc/network/interface # The loopback network interfa ...

  4. oracle的事务

    一.事务 保证数据的一致性,有一组相关的dml语句组成,该组的dml语句要么全部成功,要么全部失败 如:网上转账就是典型的要用事物来处理,用以保证数据的一致性 二.事务和锁 当执行事物操作时(dml语 ...

  5. 打印li索引值

    <ul> <li>这是第一条alert(0)</li> <li>这是第二条alert(1)</li> <li>这是第三条aler ...

  6. Nginx之搭建反向代理实现tomcat分布式集群

    参考博文: Nginx反向代理实现Tomcat分布式集群 1. jdk 安装 jdk 下载网址: http://www.oracle.com/technetwork/java/javase/downl ...

  7. 10分钟梳理MySQL核心知识点

    数据库的使用,是开发人员的基本功,对它掌握越清晰越深入,你能做的事情就越多. 做业务,要懂基本的SQL语句:做性能优化,要懂索引,懂引擎:做分库分表,要懂主从,懂读写分离... 今天我们用10分钟,重 ...

  8. Flume-概述

    Flume 是 Cloudera 提供的一个高可用的,高可靠的,分布式的海量日志采集.聚合和传输的系统.Flume 基于流式架构,灵活简单. Flume最主要的作用就是,实时读取服务器本地磁盘的数据, ...

  9. SpringCloud(四)之Netflix开源组件断路器Hystrix介绍

    一.前言? 1.Netflix Hystrix断路器是什么? Netflix Hystrix是SOA/微服务架构中提供服务隔离.熔断.降级机制的工具/框架.Netflix Hystrix是断路器的一种 ...

  10. selenium 学习中遇到的问题汇总

    1.使用document.getByClassName时无click事件,然后就不知道怎么办了,也不太懂前端,与开发大哥确认,div 中class实现展开和收起是通过隐藏和显示这种方式实现的,在编写时 ...