题目链接:https://www.jisuanke.com/contest/2870?view=challenges

题目大意:给出n个都正面朝下的硬币,操作m次,每次都选取k枚硬币抛到空中,求操作m次后,硬币向上的期望值。

思路:

1.期望跟概率还是有点不同的,期望要枚举出抛的所有的情况,然后求sigma(i * dp[][])

2.dp[i][j]表示进行i次操作后,有j枚硬币向上的概率。这样就可以求最后的硬币向上的期望了。

3.值得注意的是,预处理的组合数要开 double 型。

代码:

 #include<stdio.h>
#include<string.h>
#define mem(a, b) memset(a, b, sizeof(a)) double C[][];//组合数
double P[]; //翻i个硬币的概率,因为正反都是 1 / 2,所以用一维数组表示
double dp[][]; //表示操作i次,有j枚硬币正面向上的概率
int n, m, k; int main()
{
//预处理组合数
C[][] = ;
for(int i = ; i <= ; i ++)
{
C[i][] = ;
for(int j = ; j <= i; j ++)
{
C[i][j] = C[i - ][j - ] + C[i - ][j];
}
}
//预处理i个硬币的概率
P[] = 1.0;
for(int i = ; i <= ; i ++)
P[i] = 0.5 * P[i - ];
int T;
scanf("%d", &T);
while(T --)
{
mem(dp, );
dp[][] = 1.0;
scanf("%d%d%d", &n, &m, &k);
for(int i = ; i < m; i ++)//枚举操作次数
{
for(int j = ; j <= n; j ++)//枚举硬币正面向上的个数
{
if(dp[i][j] == )
continue;
for(int q = ; q <= k; q ++)//枚举抛k枚硬币有多少枚硬币会朝上,枚举所有情况,才是求期望
{
if((n - j) >= k)
dp[i + ][j + q] += dp[i][j] * C[k][q] * P[k];
else
dp[i + ][j + q - (k - (n - j))] += dp[i][j] * C[k][q] * P[k];
}
}
}
double ans = 0.0;
for(int i = ; i <= n; i ++)
{
ans += dp[m][i] * i;
}
printf("%.3lf\n", ans);
}
return ;
}

ACM-ICPC 2017 Asia Urumqi A. Coins【期望dp】的更多相关文章

  1. ACM-ICPC 2017 Asia Urumqi A. Coins

    Alice and Bob are playing a simple game. They line up a row of n identical coins, all with the heads ...

  2. 2017 ICPC Asia Urumqi A.coins (概率DP + 期望)

    题目链接:Coins Description Alice and Bob are playing a simple game. They line up a row of nn identical c ...

  3. ACM-ICPC 2017 Asia Urumqi:A. Coins(DP) 组合数学

    Alice and Bob are playing a simple game. They line up a row of nn identical coins, all with the head ...

  4. ACM ICPC 2017 Warmup Contest 9 I

    I. Older Brother Your older brother is an amateur mathematician with lots of experience. However, hi ...

  5. ACM ICPC 2017 Warmup Contest 9 L

    L. Sticky Situation While on summer camp, you are playing a game of hide-and-seek in the forest. You ...

  6. ACM-ICPC 2017 Asia Urumqi G. The Mountain

    All as we know, a mountain is a large landform that stretches above the surrounding land in a limite ...

  7. BZOJ4872 [六省联考2017]分手是祝愿 【期望dp】

    题目 Zeit und Raum trennen dich und mich. 时空将你我分开.B 君在玩一个游戏,这个游戏由 n 个灯和 n 个开关组成,给定这 n 个灯的初始状态,下标为 从 1 ...

  8. 洛谷P3750 [六省联考2017]分手是祝愿(期望dp)

    传送门 嗯……概率期望这东西太神了…… 先考虑一下最佳方案,肯定是从大到小亮的就灭(这个仔细想一想应该就能发现) 那么直接一遍枚举就能$O(nlogn)$把这个东西给搞出来 然后考虑期望dp,设$f[ ...

  9. ACM-ICPC 2017 Asia Urumqi:A. Coins(DP)

    挺不错的概率DP,看似基础,实则很考验扎实的功底 这题很明显是个DP,为什么???找规律或者算组合数这种概率,N不可能给的这么友善... 因为DP一般都要在支持N^2操作嘛. 稍微理解一下,这DP[i ...

随机推荐

  1. 洛谷P1436 棋盘分割

    洛谷题目链接 动态规划: 我们设状态$f[i][j][o][p][k]$表示一个矩形,左上角顶点坐标为$(i,j)$,右下角顶点坐标为$(o,p)$时分割了$k$次,也就是说现在是$k+1$块 我们考 ...

  2. Mac下Tomcat安装&配置&80默认端口设置

    序言: 在学习Tomcat时, 部署虚拟服务主机时,遇到了无响应的情况.原以为是应为Tomcat默认端口8080在调整至(进行端口转发设置)默认端口80会和Mac自带Apache起冲突.但是也有同学使 ...

  3. 查看API工具 https://editor.swagger.io/

    The base URL for the API is:    https://api.cloud.nalantis.com/api/ The OpenAPI documentation is ava ...

  4. 2017-12-3 Crontab(字符串处理)

    Crontab 哈哈本人的不及格代码(暂留): #include<iostream> #include<queue> #include<cmath> #includ ...

  5. DNA Sorting

    DNA Sorting Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 105159   Accepted: 42124 De ...

  6. C++ STL——常用算法

    目录 一 常用查找算法 二 常用遍历算法 注:原创不易,转载请务必注明原作者和出处,感谢支持! 注:内容来自某培训课程,不一定完全正确! 一 常用查找算法 /* find算法 查找元素 @param ...

  7. Java并发包同步工具之Exchanger

    前言 承接上文Java并发包同步工具之Phaser,讲述了同步工具Phaser之后,搬家博客到博客园了,接着未完成的Java并发包源码探索,接下来是Java并发包提供的最后一个同步工具Exchange ...

  8. handler四元素

    Looper 一个线程可以产生一个Looper对象,由它来管理此线程里的MessageQueue(消息队列). 我们知道一个线程是一段可执行的代码,当可执行代码执行完成后,线程生命周期便会终止,线程就 ...

  9. [Java复习] Java基础 Basic

    Q1面向对象 类.对象特征? 类:对事物逻辑算法或概念的抽象,描述一类对象的行为和状态. OOP三大特征,封装,继承,多态 封装:隐藏属性实现细节,只公开接口.将抽象的数据和行为结合,形成类.目的是简 ...

  10. Grafana添加Zabbix为数据源(一)

    最前面,此博文引自:http://docs.grafana-zabbix.org/installation/configuration-sql/ 使用zabbix来收集书籍,用grafana来显示数据 ...