ACM-ICPC 2017 Asia Urumqi A. Coins【期望dp】
题目链接:https://www.jisuanke.com/contest/2870?view=challenges
题目大意:给出n个都正面朝下的硬币,操作m次,每次都选取k枚硬币抛到空中,求操作m次后,硬币向上的期望值。
思路:
1.期望跟概率还是有点不同的,期望要枚举出抛的所有的情况,然后求sigma(i * dp[][])
2.dp[i][j]表示进行i次操作后,有j枚硬币向上的概率。这样就可以求最后的硬币向上的期望了。
3.值得注意的是,预处理的组合数要开 double 型。
代码:
#include<stdio.h>
#include<string.h>
#define mem(a, b) memset(a, b, sizeof(a)) double C[][];//组合数
double P[]; //翻i个硬币的概率,因为正反都是 1 / 2,所以用一维数组表示
double dp[][]; //表示操作i次,有j枚硬币正面向上的概率
int n, m, k; int main()
{
//预处理组合数
C[][] = ;
for(int i = ; i <= ; i ++)
{
C[i][] = ;
for(int j = ; j <= i; j ++)
{
C[i][j] = C[i - ][j - ] + C[i - ][j];
}
}
//预处理i个硬币的概率
P[] = 1.0;
for(int i = ; i <= ; i ++)
P[i] = 0.5 * P[i - ];
int T;
scanf("%d", &T);
while(T --)
{
mem(dp, );
dp[][] = 1.0;
scanf("%d%d%d", &n, &m, &k);
for(int i = ; i < m; i ++)//枚举操作次数
{
for(int j = ; j <= n; j ++)//枚举硬币正面向上的个数
{
if(dp[i][j] == )
continue;
for(int q = ; q <= k; q ++)//枚举抛k枚硬币有多少枚硬币会朝上,枚举所有情况,才是求期望
{
if((n - j) >= k)
dp[i + ][j + q] += dp[i][j] * C[k][q] * P[k];
else
dp[i + ][j + q - (k - (n - j))] += dp[i][j] * C[k][q] * P[k];
}
}
}
double ans = 0.0;
for(int i = ; i <= n; i ++)
{
ans += dp[m][i] * i;
}
printf("%.3lf\n", ans);
}
return ;
}
ACM-ICPC 2017 Asia Urumqi A. Coins【期望dp】的更多相关文章
- ACM-ICPC 2017 Asia Urumqi A. Coins
Alice and Bob are playing a simple game. They line up a row of n identical coins, all with the heads ...
- 2017 ICPC Asia Urumqi A.coins (概率DP + 期望)
题目链接:Coins Description Alice and Bob are playing a simple game. They line up a row of nn identical c ...
- ACM-ICPC 2017 Asia Urumqi:A. Coins(DP) 组合数学
Alice and Bob are playing a simple game. They line up a row of nn identical coins, all with the head ...
- ACM ICPC 2017 Warmup Contest 9 I
I. Older Brother Your older brother is an amateur mathematician with lots of experience. However, hi ...
- ACM ICPC 2017 Warmup Contest 9 L
L. Sticky Situation While on summer camp, you are playing a game of hide-and-seek in the forest. You ...
- ACM-ICPC 2017 Asia Urumqi G. The Mountain
All as we know, a mountain is a large landform that stretches above the surrounding land in a limite ...
- BZOJ4872 [六省联考2017]分手是祝愿 【期望dp】
题目 Zeit und Raum trennen dich und mich. 时空将你我分开.B 君在玩一个游戏,这个游戏由 n 个灯和 n 个开关组成,给定这 n 个灯的初始状态,下标为 从 1 ...
- 洛谷P3750 [六省联考2017]分手是祝愿(期望dp)
传送门 嗯……概率期望这东西太神了…… 先考虑一下最佳方案,肯定是从大到小亮的就灭(这个仔细想一想应该就能发现) 那么直接一遍枚举就能$O(nlogn)$把这个东西给搞出来 然后考虑期望dp,设$f[ ...
- ACM-ICPC 2017 Asia Urumqi:A. Coins(DP)
挺不错的概率DP,看似基础,实则很考验扎实的功底 这题很明显是个DP,为什么???找规律或者算组合数这种概率,N不可能给的这么友善... 因为DP一般都要在支持N^2操作嘛. 稍微理解一下,这DP[i ...
随机推荐
- App自动化-python基础
定义类:类变量.成员变量.局部变量:构造函数.类方法:实例化对象: # -*- coding: utf-8 -*- ''' Created on 2019-6-25 @author: adminstr ...
- list深拷贝和浅拷贝
在Python中,经常要对一个list进行复制.对于复制,自然的就有深拷贝与浅拷贝问题.深拷贝与浅拷贝的区别在于,当从原本的list复制出的list之后,修改其中的任意一个是否会对另一个造成影响,即这 ...
- 【原创】洛谷 LUOGU P3371 【模板】单源最短路径
P3371 [模板]单源最短路径 题目描述 如题,给出一个有向图,请输出从某一点出发到所有点的最短路径长度. 输入输出格式 输入格式: 第一行包含三个整数N.M.S,分别表示点的个数.有向边的个数.出 ...
- Django-CRM后台管理系统
crm整体流程 表结构 from django.db import models # Create your models here. from django.contrib.auth.models ...
- loj6519 魔力环
解题思路 考虑顺时针旋转 \(i\) 步得到的结果,根据Burnside引理,有 \[ Ans=\frac{\sum\limits_{i=0}^{n-1}C(i)}{n} \] \(C(i)\) 为旋 ...
- nuxt使用教程
1 引言 Nuxt 是基于 Vue 的前端开发框架,这次我们通过 Introduction toNuxtJS 视频了解框架特色以及前端开发框架的基本要素. nuxt 与 next 结构很像,可以结合在 ...
- windows下手动安装composer
原文地址:http://www.cnblogs.com/JANCHAN/p/7735882.html 1.下载compser.phar 地址 https://getcomposer.org/downl ...
- Q窗口操作函数(窗口最大化,全屏,隐藏最大化最小化按钮)
//Qt主窗口没有最小化,最大化按钮且最大化显示 int main(int argc, char *argv[]) { QApplication a(argc, argv); TestQtForWi ...
- Maven exclusions(排除依赖)
在写pom的时候,我们写的一个依赖往往会依赖于其他的包,而这些包可能是过时的不安全的,因此需要排除并重新引用安全的版本,先在依赖这个项目的pom中去除想排除的依赖,再添加指定版本的依赖. pom的依赖 ...
- 数据库sequence的作用和用法
转: 数据库sequence的作用和用法 2016年10月14日 19:51:03 很菜很菜的鸟 阅读数 14456 标签: oracle数据库db2sequence seqence的作用: se ...