cats是scala的一个新的函数式编程工具库,其设计原理基本继承了scalaz:大家都是haskell typeclass的scala版实现。当然,cats在scalaz的基础上从实现细节、库组织结构和调用方式上进行了一些优化,所以对用户来说:cats的基础数据类型、数据结构在功能上与scalaz是大致相同的,可能有一些语法上的变化。与scalaz著名抽象、复杂的语法表现形式相比,cats的语法可能更形象、简单直白。在scalaz的学习过程中,我们了解到所谓函数式编程就是monadic Programming:即用monad这样的数据类型来构建程序。而实际可行的monadic programming就是用Free-Monad编程了。因为Free-Monad程序是真正可运行的,或者说是可以实现安全运行的,因为它可以保证在固定的堆栈内实现无限运算。我们知道:函数式编程模式的运行方式以递归算法为主,flatMap函数本身就是一种递归算法。这就预示着monadic programming很容易造成堆栈溢出问题(StackOverflowError)。当我们把普通的泛函类型F[A]升格成Free-Monad后就能充分利用Free-Monad安全运算能力来构建实际可运行的程序了。由于我们在前面已经详细的了解了scalaz的大部分typeclass,包括Free,对cats的讨论就从Free开始,聚焦在cats.Free编程模式方面。同时,我们可以在使用cats.Free的过程中对cats的其它数据类型进行补充了解。

cats.Free的类型款式如下:

sealed abstract class Free[S[_], A] extends Product with Serializable {...}

S是个高阶类,就是一种函数式运算。值得注意的是:现在S不需要是个Functor了。因为Free的一个实例Suspend类型是这样的:

/** Suspend the computation with the given suspension. */
private final case class Suspend[S[_], A](a: S[A]) extends Free[S, A]

我们不需要map就可以把F[A]升格成Free

/**
* Suspend a value within a functor lifting it to a Free.
*/
def liftF[F[_], A](value: F[A]): Free[F, A] = Suspend(value)

我们在scalaz.Free的讨论中并没能详尽地分析在什么情况下S[_]必须是个Functor。下面我们需要用一些篇幅来解析。

Free程序的特点是算式(description)/算法(implementation)关注分离(separation of concern):我们用一组数据类型来模拟一种编程语句ADT(algebraic data type),这一组ADT就形成了一种定制的编程语言DSL(domain specific language)。Free的编程部分就是用DSL来描述程序功能(description of purpose),即算式了。算法即用DSL描述的功能的具体实现,可以有多种的功能实现方式。我们先看个简单的DSL:

 import cats.free._
import cats.Functor
object catsFree {
object ADTs {
sealed trait Interact[+A]
object Interact {
case class Ask(prompt: String) extends Interact[String]
case class Tell(msg: String) extends Interact[Unit] def ask(prompt: String): Free[Interact,String] = Free.liftF(Ask(prompt))
def tell(msg: String): Free[Interact,Unit] = Free.liftF(Tell(msg)) implicit object interactFunctor extends Functor[Interact] {
def map[A,B](ia: Interact[A])(f: A => B): Interact[B] = ???
/* ia match {
case Ask(p) => ???
case Tell(m) => ???
} */
}
}
}
object DSLs {
import ADTs._
import Interact._
val prg: Free[Interact,Unit] = for {
first <- ask("What's your first name?")
last <- ask("What's your last name?")
_ <- tell(s"Hello $first $last")
} yield()
}

在这个例子里Interact并不是一个Functor,因为我们无法获取Interact Functor实例的map函数。先让我们分析一下Functor的map:

      implicit object interactFunctor extends Functor[Interact]  {
def map[A,B](ia: Interact[A])(f: A => B): Interact[B] = ia match {
case Ask(p) => ???
case Tell(m) => ???
}
}

map的作用是用一个函数A => B把F[A]转成F[B]。也就是把语句状态从F[A]转成F[B],但在Interact的情况里F[B]已经是明确的Interact[Unit]和Interact[String]两种状态,而map的f是A => B,在上面的示范里我们该如何施用f来获取这个Interact[B]呢?从上面的示范里我们观察可以得出Ask和Tell这两个ADT纯粹是为了模拟ask和tell这两个函数。ask和tell分别返回Free版本的String,Unit结果。可以说:Interact并没有转换到下一个状态的要求。那么假如我们把ADT调整成下面这样呢:

       sealed trait FunInteract[NS]
object FunInteract {
case class FunAsk[NS](prompt: String, onInput: String => NS) extends FunInteract[NS]
case class FunTell[NS](msg: String, ns: NS) extends FunInteract[NS] def funAsk(prompt: String): Free[FunInteract,String] = Free.liftF(FunAsk(prompt,identity))
def funAskInt(prompt: String): Free[FunInteract,Int] = Free.liftF(FunAsk(prompt,_.toInt))
def funTell(msg: String): Free[FunInteract,Unit] = Free.liftF(FunTell(msg,())) implicit object funInteract extends Functor[FunInteract] {
def map[A,NS](fa: FunInteract[A])(f: A => NS) = fa match {
case FunAsk(prompt,input) => FunAsk(prompt,input andThen f)
case FunTell(msg,ns) => FunTell(msg,f(ns))
}
}
}

现在这两个ADT是有类型参数NS的了:FunAsk[NS],FunTell[NS]。NS代表了ADT当前类型,如FunAsk[Int]、FunTell[String]...,现在这两个ADT都通过类型参数NS变成了可map的对象了,如FunAsk[String] >>> FunAsk[String], FunAsk[String] >>> FunAsk[Int]...。所以我们可以很顺利的实现object funInteract的map函数。但是,一个有趣的现象是:为了实现这种状态转换,如果ADT需要返回操作结果,就必须具备一个引领状态转换的机制,如FunAsk类型里的onInput: String => NS:它代表funAsk函数返回的结果可以指向下一个状态。新增函数funAskInt是个很好的示范:通过返回的String结果将状态转换到FunAsk[Int]状态。函数funTell不返回结果,所以FunTell没有状态转换机制。scalaz旧版本Free.Suspend的类型款式是:Suspend[F[Free,A]],这是一个递归类型,内部的Free代表下一个状态。由于我们必须用F.map才能取出下一个状态,所以F必须是个Functor。我们应该注意到如果ADT是Functor的话会造成Free程序的冗余代码。既然cats.Free对F[A]没有设置Functor门槛,那么我们应该尽量避免使用Functor。

得出对ADT类型要求结论后,我们接着示范cats的Free编程。下面是Free程序的功能实现interpret部分(implementation):

     import ADTs._
object iconsole extends (Interact ~> Id) {
def apply[A](ia: Interact[A]): Id[A] = ia match {
case Ask(p) => {println(p); readLine}
case Tell(m) => println(m)
}
}
}

DSL程序的功能实现就是把ADT F[A]对应到实际的指令集G[A],在Free编程里用NaturalTransformation ~>来实现。注意G[A]必须是个Monad。在上面的例子里对应关系是:Interact~>Id,代表直接对应到运算指令println和readLine。我们也可以实现另一个版本:

     type Prompt = String
type Reply = String
type Message = String
type Tester[A] = Map[Prompt,Reply] => (List[Message],A)
object tester extends (Interact ~> Tester) {
def apply[A](ia: Interact[A]): Tester[A] = ia match {
case Ask(p) => { m => (List(), m(p)) }
case Tell(m) => { _ => (List(m), ()) }
}
}
import cats.Monad
implicit val testerMonad = new Monad[Tester] {
override def pure[A](a: A): Tester[A] = _ => (List(),a)
override def flatMap[A,B](ta: Tester[A])(f: A => Tester[B]): Tester[B] = m => {
val (o1,a1) = ta(m)
val (o2,a2) = f(a1)(m)
(o1 ++ o2, a2)
}
override def tailRecM[A,B](a: A)(f: A => Tester[Either[A,B]]): Tester[B] =
defaultTailRecM(a)(f)
}
}

上面是个模拟测试:我们用个Map[K,V]来模拟互动,K模拟问prompt,V模拟获取回答Input。测试方式是个Function1,输入测试数据Map,在List[Message]里返回所有Tell产生的信息。上面提到过Tester[A]必须是个Monad,所以我们实现了Tester的Monad实例testMonad。实际上 m=>(List,a)就是个writer函数。所谓的Writer就是包嵌一个对值pair(L,V)的Monad,L代表Log,V代表运算值。Writer的特性就是log所有V的运算过程。我们又可以用Writer来实现这个tester:

    import cats.data.WriterT
type WF[A] = Map[Prompt,Reply] => A
type WriterTester[A] = WriterT[WF,List[Message],A]
def testerToWriter[A](f: Map[Prompt,Reply] => (List[Message],A)) =
WriterT[WF,List[Message],A](f)
object testWriter extends (Interact ~> WriterTester) {
import Interact._
def apply[A](ia: Interact[A]): WriterTester[A] = ia match {
case Ask(p) => testerToWriter(m => (List(),m(p)))
case Tell(m) => testerToWriter(_ => (List(m),()))
}
}

如果我们用Writer来实现Interact,实际上就是把Ask和Tell都升格成Writer类型。

我们再来看看在cats里是如何运算Free DSL程序的。相对scalaz而言,cats的运算函数简单的多,就一个foldMap,我们来看看它的定义:

/**
* Catamorphism for `Free`.
*
* Run to completion, mapping the suspension with the given
* transformation at each step and accumulating into the monad `M`.
*
* This method uses `tailRecM` to provide stack-safety.
*/
final def foldMap[M[_]](f: FunctionK[S, M])(implicit M: Monad[M], r: RecursiveTailRecM[M]): M[A] =
r.sameType(M).tailRecM(this)(_.step match {
case Pure(a) => M.pure(Right(a))
case Suspend(sa) => M.map(f(sa))(Right(_))
case FlatMapped(c, g) => M.map(c.foldMap(f))(cc => Left(g(cc)))
})

除了要求M是个Monad之外,cats还要求M的RecursiveTailRecM隐式实例。那么什么是RecursiveTailRecM呢:

/**
* This is a marker type that promises that the method
* .tailRecM for this type is stack-safe for arbitrary recursion.
*/
trait RecursiveTailRecM[F[_]] extends Serializable {
/*
* you can call RecursiveTailRecM[F].sameType(Monad[F]).tailRec
* to have a static check that the types agree
* for safer usage of tailRecM
*/
final def sameType[M[_[_]]](m: M[F]): M[F] = m
}

我们用RecursiveTailRecM来保证这个Monad类型与tailRecM是匹配的,这是一种运算安全措施,所以在foldMap函数里r.sameType(M).tailRecM保证了tailRecM不会造成StackOverflowError。cats.Free里还有一种不需要类型安全检验的函数foldMapUnsafe:

/**
* Same as foldMap but without a guarantee of stack safety. If the recursion is shallow
* enough, this will work
*/
final def foldMapUnsafe[M[_]](f: FunctionK[S, M])(implicit M: Monad[M]): M[A] =
foldMap[M](f)(M, RecursiveTailRecM.create)

这个函数不需要RecursiveTailRecM。下面我们选择能保证运算安全的方法来运算tester:首先我们需要Tester类型的Monad和RecursiveTailRecM实例:

     import cats.Monad
implicit val testerMonad = new Monad[Tester] with RecursiveTailRecM[Tester]{
override def pure[A](a: A): Tester[A] = _ => (List(),a)
override def flatMap[A,B](ta: Tester[A])(f: A => Tester[B]): Tester[B] = m => {
val (o1,a1) = ta(m)
val (o2,a2) = f(a1)(m)
(o1 ++ o2, a2)
}
override def tailRecM[A,B](a: A)(f: A => Tester[Either[A,B]]): Tester[B] =
defaultTailRecM(a)(f)
}

然后我们制造一些测试数据:

   val testData = Map("What's your first name?" -> "Tiger",
"What's your last name?" -> "Chan") //> testData : scala.collection.immutable.Map[String,String] = Map(What's your first name? -> Tiger, What's your last name? -> Chan)

测试运算:

 import ADTs._,DSLs._,IMPLs._
val testData = Map("What's your first name?" -> "Tiger",
"What's your last name?" -> "Chan") //> testData : scala.collection.immutable.Map[String,String] = Map(What's your first name? -> Tiger, What's your last name? -> Chan)
val prgRunner = prg.foldMap(tester) //> prgRunner : demo.ws.catsFree.IMPLs.Tester[Unit] = <function1>
prgRunner(testData) //> res0: (List[demo.ws.catsFree.IMPLs.Message], Unit) = (List(Hello Tiger Chan),())

那么如果运算testWriter呢?我们先取得WriterT的Monad实例:

    implicit val testWriterMonad =  WriterT.catsDataMonadWriterForWriterT[WF,List[Message]]

然后构建一个RecursiveTailRecM实例后再用同样的测试数据来运算:

  implicit val testWriterRecT = new RecursiveTailRecM[WriterTester]{}
//> testWriterRecT : cats.RecursiveTailRecM[demo.ws.catsFree.IMPLs.WriterTester] = demo.ws.catsFree$$anonfun$main$1$$anon$2@6093dd95
val prgRunner = prg.foldMap(testWriter) //> prgRunner : demo.ws.catsFree.IMPLs.WriterTester[Unit] = WriterT(<function1>)
prgRunner.run(testData)._1.map(println) //> Hello Tiger Chan
//| res0: List[Unit] = List(())

运算结果一致。

我们再示范一下cats官方文件里关于free monad例子:模拟一个KVStore的put,get,delete功能。ADT设计如下:

   object ADTs {
sealed trait KVStoreA[+A]
case class Put[T](key: String, value: T) extends KVStoreA[Unit]
case class Get[T](key: String) extends KVStoreA[Option[T]]
case class Del(key: String) extends KVStoreA[Unit]
}

对应的模拟功能函数设计如下:

     type KVStore[A] = Free[KVStoreA,A]
object KVStoreA {
def put[T](key: String, value: T): KVStore[Unit] =
Free.liftF[KVStoreA,Unit](Put[T](key,value))
def get[T](key: String): KVStore[Option[T]] =
Free.liftF[KVStoreA,Option[T]](Get[T](key))
def del(key: String): KVStore[Unit] =
Free.liftF[KVStoreA,Unit](Del(key))
def mod[T](key: String, f: T => T): KVStore[Unit] =
for {
opt <- get[T](key)
_ <- opt.map {t => put[T](key,f(t))}.getOrElse(Free.pure(()))
} yield()
}

注意一下mod函数:它是由基础函数get和put组合而成。我们要求所有在for内的类型为Free[KVStoreA,?],所以当f函数施用后如果opt变成None时就返回结果Free.pure(()),它的类型是:Free[Nothing,Unit],Nothing是KVStoreA的子类。

现在我们可以用这个DSL来编制KVS程序了:

  object DSLs {
import ADTs._
import KVStoreA._
def prg: KVStore[Option[Int]] =
for {
_ <- put[Int]("wild-cats", )
_ <- mod[Int]("wild-cats", (_ + ))
_ <- put[Int]("tame-cats", )
n <- get[Int]("wild-cats")
_ <- del("tame-cats")
} yield n
}

我们可以通过State数据结纯代码(pure code)方式来实现用immutable map的KVStore:

  object IMPLs {
import ADTs._
import cats.{~>}
import cats.data.State type KVStoreState[A] = State[Map[String, Any], A]
val kvsToState: KVStoreA ~> KVStoreState = new (KVStoreA ~> KVStoreState) {
def apply[A](fa: KVStoreA[A]): KVStoreState[A] =
fa match {
case Put(key, value) => State { (s:Map[String, Any]) =>
(s.updated(key, value),()) }
case Get(key) => State { (s:Map[String, Any]) =>
(s,s.get(key).asInstanceOf[A]) }
case Del(key) => State { (s:Map[String, Any]) =>
(s - key, (())) }
}
}
}

我们把KVStoreA ADT模拟成对State结构的S转换(mutation),返回State{S=>(S,A)}。KVStoreState[A]类型的S参数为immutable.Map[String, Any],所以我们在S转换操作时用immutable map的操作函数来构建新的map返回,典型的pure code。我们来运算一下KVStoreA程序:

   import ADTs._,DSLs._,IMPLs._
val prgRunner = prg.foldMap(kvsToState) //> prgRunner : demo.ws.catsFreeKVS.IMPLs.KVStoreState[Option[Int]] = cats.data.StateT@2cfb4a64
prgRunner.run(Map.empty).value //> res0: (Map[String,Any], Option[Int]) = (Map(wild-cats -> 14),Some(14))

但是难道不需要Monad、RecursiveTailRecM实例了吗?实际上cats已经提供了State的Monad和RecursiveTailRecM实例:

   import cats.{Monad,RecursiveTailRecM}
implicitly[Monad[KVStoreState]] //> res1: cats.Monad[demo.ws.catsFreeKVS.IMPLs.KVStoreState] = cats.data.StateT Instances$$anon$2@71bbf57e
implicitly[RecursiveTailRecM[KVStoreState]] //> res2: cats.RecursiveTailRecM[demo.ws.catsFreeKVS.IMPLs.KVStoreState] = cats.RecursiveTailRecM$$anon$1@7f13d6e

在cats的StateT.scala里可以找到这段代码:

private[data] sealed trait StateTInstances2 {
implicit def catsDataMonadForStateT[F[_], S](implicit F0: Monad[F]): Monad[StateT[F, S, ?]] =
new StateTMonad[F, S] { implicit def F = F0 } implicit def catsDataRecursiveTailRecMForStateT[F[_]: RecursiveTailRecM, S]: RecursiveTailRecM[StateT[F, S, ?]] = RecursiveTailRecM.create[StateT[F, S, ?]] implicit def catsDataSemigroupKForStateT[F[_], S](implicit F0: Monad[F], G0: SemigroupK[F]): SemigroupK[StateT[F, S, ?]] =
new StateTSemigroupK[F, S] { implicit def F = F0; implicit def G = G0 }
}

我把上面两个示范的源代码提供在下面:

Interact:

 import cats.free._
import cats.{Functor, RecursiveTailRecM}
object catsFree {
object ADTs {
sealed trait Interact[+A]
object Interact {
case class Ask(prompt: String) extends Interact[String]
case class Tell(msg: String) extends Interact[Unit] def ask(prompt: String): Free[Interact,String] = Free.liftF(Ask(prompt))
def tell(msg: String): Free[Interact,Unit] = Free.liftF(Tell(msg)) implicit object interactFunctor extends Functor[Interact] {
def map[A,B](ia: Interact[A])(f: A => B): Interact[B] = ???
/* ia match {
case Ask(p) => ???
case Tell(m) => ???
} */
} sealed trait FunInteract[NS]
object FunInteract {
case class FunAsk[NS](prompt: String, onInput: String => NS) extends FunInteract[NS]
case class FunTell[NS](msg: String, ns: NS) extends FunInteract[NS] def funAsk(prompt: String): Free[FunInteract,String] = Free.liftF(FunAsk(prompt,identity))
def funAskInt(prompt: String): Free[FunInteract,Int] = Free.liftF(FunAsk(prompt,_.toInt))
def funTell(msg: String): Free[FunInteract,Unit] = Free.liftF(FunTell(msg,())) implicit object funInteract extends Functor[FunInteract] {
def map[A,NS](fa: FunInteract[A])(f: A => NS) = fa match {
case FunAsk(prompt,input) => FunAsk(prompt,input andThen f)
case FunTell(msg,ns) => FunTell(msg,f(ns))
}
}
}
}
}
object DSLs {
import ADTs._
import Interact._
val prg: Free[Interact,Unit] = for {
first <- ask("What's your first name?")
last <- ask("What's your last name?")
_ <- tell(s"Hello $first $last")
} yield()
}
object IMPLs {
import cats.{Id,~>}
import ADTs._
import Interact._
object iconsole extends (Interact ~> Id) {
def apply[A](ia: Interact[A]): Id[A] = ia match {
case Ask(p) => {println(p); readLine}
case Tell(m) => println(m)
}
} type Prompt = String
type Reply = String
type Message = String
type Tester[A] = Map[Prompt,Reply] => (List[Message],A)
object tester extends (Interact ~> Tester) {
def apply[A](ia: Interact[A]): Tester[A] = ia match {
case Ask(p) => { m => (List(), m(p)) }
case Tell(m) => { _ => (List(m), ()) }
}
}
import cats.Monad
implicit val testerMonad = new Monad[Tester] with RecursiveTailRecM[Tester]{
override def pure[A](a: A): Tester[A] = _ => (List(),a)
override def flatMap[A,B](ta: Tester[A])(f: A => Tester[B]): Tester[B] = m => {
val (o1,a1) = ta(m)
val (o2,a2) = f(a1)(m)
(o1 ++ o2, a2)
}
override def tailRecM[A,B](a: A)(f: A => Tester[Either[A,B]]): Tester[B] =
defaultTailRecM(a)(f)
}
import cats.data.WriterT
import cats.instances.all._
type WF[A] = Map[Prompt,Reply] => A
type WriterTester[A] = WriterT[WF,List[Message],A]
def testerToWriter[A](f: Map[Prompt,Reply] => (List[Message],A)) =
WriterT[WF,List[Message],A](f)
implicit val testWriterMonad = WriterT.catsDataMonadWriterForWriterT[WF,List[Message]]
object testWriter extends (Interact ~> WriterTester) {
import Interact._
def apply[A](ia: Interact[A]): WriterTester[A] = ia match {
case Ask(p) => testerToWriter(m => (List(),m(p)))
case Tell(m) => testerToWriter(_ => (List(m),()))
}
}
} import ADTs._,DSLs._,IMPLs._
val testData = Map("What's your first name?" -> "Tiger",
"What's your last name?" -> "Chan")
//val prgRunner = prg.foldMap(tester)
//prgRunner(testData)
implicit val testWriterRecT = new RecursiveTailRecM[WriterTester]{}
val prgRunner = prg.foldMap(testWriter)
prgRunner.run(testData)._1.map(println)
}

KVStore:

 import cats.free._
import cats.instances.all._
object catsFreeKVS {
object ADTs {
sealed trait KVStoreA[+A]
case class Put[T](key: String, value: T) extends KVStoreA[Unit]
case class Get[T](key: String) extends KVStoreA[Option[T]]
case class Del(key: String) extends KVStoreA[Unit]
type KVStore[A] = Free[KVStoreA,A]
object KVStoreA {
def put[T](key: String, value: T): KVStore[Unit] =
Free.liftF[KVStoreA,Unit](Put[T](key,value))
def get[T](key: String): KVStore[Option[T]] =
Free.liftF[KVStoreA,Option[T]](Get[T](key))
def del(key: String): KVStore[Unit] =
Free.liftF[KVStoreA,Unit](Del(key))
def mod[T](key: String, f: T => T): KVStore[Unit] =
for {
opt <- get[T](key)
_ <- opt.map {t => put[T](key,f(t))}.getOrElse(Free.pure(()))
} yield()
}
}
object DSLs {
import ADTs._
import KVStoreA._
def prg: KVStore[Option[Int]] =
for {
_ <- put[Int]("wild-cats", )
_ <- mod[Int]("wild-cats", (_ + ))
_ <- put[Int]("tame-cats", )
n <- get[Int]("wild-cats")
_ <- del("tame-cats")
} yield n
}
object IMPLs {
import ADTs._
import cats.{~>}
import cats.data.State type KVStoreState[A] = State[Map[String, Any], A]
val kvsToState: KVStoreA ~> KVStoreState = new (KVStoreA ~> KVStoreState) {
def apply[A](fa: KVStoreA[A]): KVStoreState[A] =
fa match {
case Put(key, value) => State { (s:Map[String, Any]) =>
(s.updated(key, value),()) }
case Get(key) => State { (s:Map[String, Any]) =>
(s,s.get(key).asInstanceOf[A]) }
case Del(key) => State { (s:Map[String, Any]) =>
(s - key, (())) }
}
}
}
import ADTs._,DSLs._,IMPLs._
val prgRunner = prg.foldMap(kvsToState)
prgRunner.run(Map.empty).value import cats.{Monad,RecursiveTailRecM}
implicitly[Monad[KVStoreState]]
implicitly[RecursiveTailRecM[KVStoreState]]
}

Cats(1)- 从Free开始,Free cats的更多相关文章

  1. [POJ 3735] Training little cats (结构矩阵、矩阵高速功率)

    Training little cats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 9613   Accepted: 2 ...

  2. Training little cats poj3735

    Training little cats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 9299   Accepted: 2 ...

  3. Training little cats(poj3735,矩阵快速幂)

    Training little cats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10737   Accepted:  ...

  4. POJ 3735 Training little cats<矩阵快速幂/稀疏矩阵的优化>

    Training little cats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 13488   Accepted:  ...

  5. POJ 3735 Training little cats(矩阵快速幂)

    Training little cats Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 11787 Accepted: 2892 ...

  6. POJ 3735:Training little cats 联想到矩阵相乘

    Training little cats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 11208   Accepted:  ...

  7. poj3757 Training little cats

    Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 11496   Accepted: 2815 Description Face ...

  8. Cats(4)- 叠加Free程序运算结果,Stacking monadic result types

    在前面的几篇关于Free编程的讨论示范中我们均使用了基础类型的运算结果.但在实际应用中因为需要考虑运算中出现异常的情况,常常会需要到更高阶复杂的运算结果类型如Option.Xor等.因为Monad无法 ...

  9. Cats(3)- freeK-Free编程更轻松,Free programming with freeK

    在上一节我们讨论了通过Coproduct来实现DSL组合:用一些功能简单的基础DSL组合成符合大型多复杂功能应用的DSL.但是我们发现:cats在处理多层递归Coproduct结构时会出现编译问题.再 ...

随机推荐

  1. [备忘]Redis运行出现Client sent AUTH, but no password is set

    原因:程序提供了密码,但是redis.conf中并没有设置密码. 附加问题:如果redis.conf中设置了密码,有可能会导致服务无法启动,报5013错误.可能是访问权限的问题.

  2. 启动 Apache2.2 的问题

    启动 Apache2.2 的问题: windows不能在本地计算机启动 Apache2.2.有关更多信息,查阅系统事件日志.如果这是非Microsoft服务,请与服务厂商联系,并参考特定服务错误代码1 ...

  3. iOS 代码规范

    1 目的 统一规范XCode编辑环境下Objective-C.swift的编码风格和标准 2 适用范围 适用于所有用Objective-C,swift语言开发的项目. 3 编码规范 3.1 文件 项目 ...

  4. CPU占用率呈正弦实现,及实时输出进程和线程的CPU占用率

    CPU占用率呈正弦实现,及实时输出进程和线程的CPU占用率 #include "stdafx.h" #include <windows.h> #include < ...

  5. Vue脚手架工具vue-cli和调试组件vue-devtools

    https://github.com/vuejs/vue-cli npm install vue-cli -g vue init webpack my-project cd my-project // ...

  6. jQuery 2.0.3 源码分析 数据缓存

    历史背景: jQuery从1.2.3版本引入数据缓存系统,主要的原因就是早期的事件系统 Dean Edwards 的 ddEvent.js代码 带来的问题: 没有一个系统的缓存机制,它把事件的回调都放 ...

  7. nodejs+edatagrid读取本地excel表格

     

  8. Cookie/Session机制详解

    会话(Session)跟踪是Web程序中常用的技术,用来跟踪用户的整个会话.常用的会话跟踪技术是Cookie与Session.Cookie通过在客户端记录信息确定用户身份,Session通过在服务器端 ...

  9. [c++] Exceptions

    注意优先级关系,如下: try { throw logic_error{"blah"}; } catch (exception) { // caught here! // 有点if ...

  10. 制作动画或小游戏——CreateJS基础类(一)

    前面曾经记录过Canvas的基础知识<让自己也能使用Canvas>,在实际使用中,用封装好的库效率会高点. 使用成熟的库还能对基础知识有更深入的理解,CreateJS是基于HTML5开发的 ...