前一个小时看这几道题感觉要爆零


A. 仓鼠的石子游戏

分析一下发现a[i]>1a[i]>1a[i]>1时后先手必输,a[i]=1a[i]=1a[i]=1时先手必赢

然后直接看1的个数奇偶性就行了

CODE

#include <bits/stdc++.h>
using namespace std;
int main () {
int T, n, a; scanf("%d", &T);
while(T--) {
scanf("%d", &n);
int ans = 0;
for(int i = 1; i <= n; ++i)
scanf("%d", &a), ans ^= (a == 1);
puts(ans ? "rabbit" : "hamster");
}
}

B.乃爱与城市拥挤程度

f[i][j],g[i][j]f[i][j],g[i][j]f[i][j],g[i][j]分别表示iii点下方走jjj步的答案。

答案就是f[i][k],g[i][k]f[i][k],g[i][k]f[i][k],g[i][k]

傻逼树形DP

O(nklog⁡)O(nk\log)O(nklog),有log⁡\loglog是因为求逆元,实际上可以把要求逆元的数取出来O(n)O(n)O(n)求一遍就可以做到O(nk)O(nk)O(nk),不过没必要。

CODE

#include <bits/stdc++.h>
using namespace std;
const int MAXN = 100005;
const int MAXK = 12;
const int mod = 1e9 + 7;
int n, k, f[MAXN][MAXK], g[MAXN][MAXK];
int fir[MAXN], to[MAXN<<1], nxt[MAXN<<1], cnt;
inline void link(int u, int v) {
to[++cnt] = v; nxt[cnt] = fir[u]; fir[u] = cnt;
to[++cnt] = u; nxt[cnt] = fir[v]; fir[v] = cnt;
}
inline int qpow(int a, int b) {
int re = 1;
while(b) {
if(b&1) re = 1ll * re * a % mod;
a = 1ll * a * a % mod; b >>= 1;
}
return re;
}
void dfs1(int u, int ff) {
for(int j = 0; j <= k; ++j) f[u][j] = 1, g[u][j] = 1;
for(int i = fir[u], v; i; i = nxt[i])
if((v=to[i]) != ff) {
dfs1(v, u);
for(int j = 1; j <= k; ++j) {
f[u][j] += f[v][j-1];
g[u][j] = 1ll*g[u][j]*g[v][j-1]%mod;
}
}
for(int j = 0; j <= k; ++j)
g[u][j] = 1ll * g[u][j] * f[u][j] % mod;
}
int F[MAXN], G[MAXN];
void dfs2(int u, int ff) {
F[u] = f[u][k], G[u] = g[u][k];
for(int i = fir[u], v; i; i = nxt[i])
if((v=to[i]) != ff) {
for(int j = k; j >= 1; --j) {
g[v][j] = 1ll * g[v][j] * qpow(f[v][j], mod-2) % mod * (f[v][j]+f[u][j-1]-(j>=2?f[v][j-2]:0)) % mod * g[u][j-1] % mod * qpow(f[u][j-1], mod-2) % mod * (f[u][j-1] - (j>=2?f[v][j-2]:0)) % mod * (j>=2?qpow(g[v][j-2], mod-2):1) % mod;
f[v][j] += f[u][j-1]-(j>=2?f[v][j-2]:0);
}
dfs2(v, u);
}
} int main () {
scanf("%d%d", &n, &k);
for(int i = 1, u, v; i < n; ++i) scanf("%d%d", &u, &v), link(u, v);
dfs1(1, 0), dfs2(1, 0);
for(int i = 1; i <= n; ++i) printf("%d%c", F[i], " \n"[i==n]);
for(int i = 1; i <= n; ++i) printf("%d%c", G[i], " \n"[i==n]);
}

C.小w的魔术扑克

把一张牌的两面的值连边。

最后发现一个连通块,如果里面有重边或者环,这个连通块所有的值肯定都能凑出来。

只需要考虑那些树形态的连通块。

对于一棵树,询问区间是[l,r][l,r][l,r],如果整棵树值域都在[l,r][l,r][l,r]内,一定不能满足,否则就可以。所以求出每棵树的值域[mn,mx][mn,mx][mn,mx],然后包含这个区间的[l,r][l,r][l,r]答案都是NoNoNo。区间排序后O(n)O(n)O(n)直接做。

总时间复杂度O(nlog⁡n)O(n\log n)O(nlogn)

upd:upd:upd:也可以在mxmxmx处附上mnmnmn的值,然后求一个前缀最大值,然后对于一个询问,如果1→r1\to r1→r的前缀最大值>=l>=l>=l就一定包含了一个区间。这样做是O(n)O(n)O(n)的。还更好写。。

CODE

#include <bits/stdc++.h>
using namespace std;
const int MAXN = 100005;
int n, m, k, Q;
int fir[MAXN], to[MAXN<<1], nxt[MAXN<<1], cnt = 1;
inline void link(int u, int v) {
to[++cnt] = v; nxt[cnt] = fir[u]; fir[u] = cnt;
to[++cnt] = u; nxt[cnt] = fir[v]; fir[v] = cnt;
}
int mn, mx;
bool vis[MAXN], inq[MAXN], flg;
void dfs(int u, int ff) {
vis[u] = inq[u] = 1;
mn = min(mn, u);
mx = max(mx, u);
for(int i = fir[u], v; i; i = nxt[i]) if((i^1) != ff){
if(!vis[v=to[i]]) dfs(v, i);
else if(inq[v]) flg = 1;
}
inq[u] = 0;
}
struct node {
int l, r, id;
inline bool operator <(const node &o)const {
return r < o.r;
}
}a[MAXN], q[MAXN];
bool ans[MAXN];
int main () {
scanf("%d%d", &n, &k);
for(int i = 1, u, v; i <= k; ++i) scanf("%d%d", &u, &v), link(u, v);
for(int i = 1; i <= n; ++i)
if(!vis[i]) {
flg = 0; mn = i, mx = i;
dfs(i, 0);
if(!flg) a[++m] = (node){ mn, mx };
}
sort(a + 1, a + m + 1);
scanf("%d", &Q);
for(int i = 1; i <= Q; ++i)
scanf("%d%d", &q[i].l, &q[i].r), q[i].id = i;
sort(q + 1, q + Q + 1);
int pos = 0;
for(int i = 1, j = 1; i <= Q; ++i) {
while(j <= m && a[j].r <= q[i].r) pos = max(pos, a[j++].l);
ans[q[i].id] = q[i].l <= pos;
}
for(int i = 1; i <= Q; ++i) puts(ans[i] ? "No" : "Yes");
}

然后莫名其妙就AK了。

20191029 牛客CSP-S提高组赛前集训营1的更多相关文章

  1. 牛客网CSP-S提高组赛前集训营Round4

    牛客网CSP-S提高组赛前集训营 标签(空格分隔): 题解 算法 模拟赛 题目 描述 做法 \(BSOJ6377\) 求由\(n\)长度的数组复制\(k\)次的数组里每个连续子序列出现数字种类的和 对 ...

  2. 牛客CSP-S提高组赛前集训营1

    牛客CSP-S提高组赛前集训营1 比赛链接 官方题解 before:T1观察+结论题,T2树形Dp,可以换根或up&down,T3正解妙,转化为图上问题.题目质量不错,但数据太水了~. A-仓 ...

  3. 牛客CSP-S提高组赛前集训营3

    A 货物收集 显然是一个二分答案的题. #include<iostream> #include<cstdio> #include<cstring> #include ...

  4. 牛客CSP-S提高组赛前集训营3 赛后总结

    货物收集 二分答案.复杂度\(O(n\log n)\). 货物分组 用费用提前计算的思想,考虑用一个新的箱子来装货物会发生什么. 显然费用会加上后面的所有货物的总重. \(60\)分的\(O(n^2) ...

  5. 牛客CSP-S提高组赛前集训营2 ———— 2019.10.31

    比赛链接 期望得分:100+20+20 实际得分:40+20+30 awa  cccc T1 :基于贪心的思路,然后开始爆搜(雾 那必然是会死的,好吧他就是死了 #include<iostrea ...

  6. 牛客CSP-S提高组赛前集训营1———2019.10.29 18:30 至 22:00

    期望得分:100+0+10 实际得分:40+0+0 考炸了... T1:题目链接 究竟为什么会这样,,, 仔细研读我的丑代码 发现... 枯辽.... #include<cstdio> # ...

  7. 牛客CSP-S提高组赛前集训营2 T2沙漠点列

    原题链接 算法不难,比赛的时候就和cyc大佬一起yy了正解,不过因为交的时候比较急(要回寝室惹),我有两数组开错大小直接爆到50,cyc大佬则只把文件输入关了一半,直接爆零(╯ ̄Д ̄)╯┻━┻ 要尽量 ...

  8. 牛客CSP-S提高组赛前集训营4 赛后总结

    复读数组 分成 3 种区间算答案: 一个块内的区间 两个块交界处,长度小于块长的区间 长度不小于块长的区间 对于第三种区间,容易发现每个区间的权值一样,只需要算出个数即可. 对于前两种空间,我的思路是 ...

  9. 牛客CSP-S提高组赛前集训营5 赛后总结

    A.无形的博弈 心理题. 答案为\(2^n\),可感性理解结论的正确性. #include<bits/stdc++.h> #define LL long long const LL Mod ...

随机推荐

  1. 015 Android md5密码加密及其工具类

    1.md5加密介绍 MD5算法是广泛使用的杂凑函数,也就是哈希函数,英文全拼是:Message Digest Algorithm,对应的中文名字是消息摘要算法. MD5加密:将字符串转换成 32位的字 ...

  2. php实现映射

    目录 映射 实现 链表实现: 二叉树实现 复杂度分析 映射 映射,或者射影,在数学及相关的领域经常等同于函数.基于此,部分映射就相当于部分函数,而完全映射相当于完全函数. 映射(Map)是用于存取键值 ...

  3. 随记sqlserver学习笔记

    create database libraryDBgouse libraryDBgo--读者信息表create table ReaderInfo( ReaderId int not null prim ...

  4. P1777 帮助_NOI导刊2010提高(03)

    也许更好的阅读体验 \(\mathcal{Description}\) Bubu的书架乱成一团了!帮他一下吧! 他的书架上一共有n本书.我们定义混乱值是连续相同高度书本的段数.例如,如果书的高度是30 ...

  5. Redis缓存如何保证一致性

    为什么使用Redis做缓存 MySQL缺点 单机连接数目有限 对数据进行写速度慢 Redis优点 内存操作数据速度快 IO复用,速度快 单线程模型,避免线程切换带来的开销,速度快 一致性问题 读数据的 ...

  6. Python之算法模型-5.1

    一.这里学习的算法模型包含监督学习和非监督学习两个方式的算法. 其中监督学习的主要算法分为(分类算法,回归算法),无监督学习(聚类算法),这里的几种算法,主要是学习他们用来做预测的效果和具体的使用方式 ...

  7. Suricata Rules

    Suricata Rules https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Suricata_Rules https ...

  8. django pk 和id用法

    pk就是primary key的缩写,也就是任何model中都有的主键,那么id呢,大部分时候也是model的主键,所以在这个时候我们可以认为pk和id是完全一样的. class Student(mo ...

  9. ECMAScript5面向对象技术(1)--原始类型和引用类型

    概述 大多数开发者在使用Java或C#等基于类的语言的过程中学会了面向对象编程.由于JavaScript没有对类的正式支持,这些开发者在学习JavaScript时往往会迷失方向: JavaScript ...

  10. EntityFramework进阶(二)- DbContext预热

    本系列原创博客代码已在EntityFramework6.0.0测试通过,转载请标明出处 在DbContext首次调用的时候,会很慢,甚至会有5,6秒的等待,通常称为冷查询.再次调用的时候,几毫秒就能请 ...