对连续值处理

0.binarizer/二值化

from __future__ import print_function
from pyspark.sql import SparkSession
from pyspark.ml.feature import Binarizer#ml相对于mllib更全一点,更新一点

  

spark = SparkSession\
.builder\
.appName("BinarizerExample")\
.getOrCreate() continuousDataFrame = spark.createDataFrame([
(0, 1.1),
(1, 8.5),
(2, 5.2)
], ["id", "feature"]) binarizer = Binarizer(threshold=5.1, inputCol="feature", outputCol="binarized_feature") binarizedDataFrame = binarizer.transform(continuousDataFrame) print("Binarizer output with Threshold = %f" % binarizer.getThreshold())
binarizedDataFrame.show() spark.stop()

  结果:

Binarizer output with Threshold = 5.100000
+---+-------+-----------------+
| id|feature|binarized_feature|
+---+-------+-----------------+
| 0| 1.1| 0.0|
| 1| 8.5| 1.0|
| 2| 5.2| 1.0|
+---+-------+-----------------+

1.按照给定边界离散化

from __future__ import print_function
from pyspark.sql import SparkSession
from pyspark.ml.feature import Bucketizer spark = SparkSession\
.builder\
.appName("BucketizerExample")\
.getOrCreate() splits = [-float("inf"), -0.5, 0.0, 0.5, float("inf")]#-float("inf"):指的是负无穷 data = [(-999.9,), (-0.5,), (-0.3,), (0.0,), (0.2,), (999.9,)]
dataFrame = spark.createDataFrame(data, ["features"]) bucketizer = Bucketizer(splits=splits, inputCol="features", outputCol="bucketedFeatures") # 按照给定的边界进行分桶
bucketedData = bucketizer.transform(dataFrame) print("Bucketizer output with %d buckets" % (len(bucketizer.getSplits())-1))
bucketedData.show() spark.stop()

  结果:

Bucketizer output with 4 buckets
+--------+----------------+
|features|bucketedFeatures|
+--------+----------------+
| -999.9| 0.0|
| -0.5| 1.0|
| -0.3| 1.0|
| 0.0| 2.0|
| 0.2| 2.0|
| 999.9| 3.0|
+--------+----------------+

2.quantile_discretizer/按分位数离散化

from __future__ import print_function
from pyspark.ml.feature import QuantileDiscretizer
from pyspark.sql import SparkSession spark = SparkSession\
.builder\
.appName("QuantileDiscretizerExample")\
.getOrCreate() data = [(0, 18.0), (1, 19.0), (2, 8.0), (3, 5.0), (4, 2.2), (5, 9.2), (6, 14.4)]
df = spark.createDataFrame(data, ["id", "hour"])
df = df.repartition(1)#数据量小设置为1个分区,这样不出错!数据量大的话可以设置为多个分区。 # 分成3个桶进行离散化
discretizer = QuantileDiscretizer(numBuckets=3, inputCol="hour", outputCol="result") result = discretizer.fit(df).transform(df)
result.show() spark.stop()

  结果:

+---+----+------+
| id|hour|result|
+---+----+------+
| 0|18.0| 2.0|
| 1|19.0| 2.0|
| 2| 8.0| 1.0|
| 3| 5.0| 0.0|
| 4| 2.2| 0.0|
| 5| 9.2| 1.0|
| 6|14.4| 2.0|
+---+----+------+

3.最大最小值幅度缩放

from __future__ import print_function
from pyspark.ml.feature import MaxAbsScaler
from pyspark.ml.linalg import Vectors
from pyspark.sql import SparkSession spark = SparkSession\
.builder\
.appName("MaxAbsScalerExample")\
.getOrCreate() dataFrame = spark.createDataFrame([
(0, Vectors.dense([1.0, 0.1, -8.0]),),#dense表示稠密向量
(1, Vectors.dense([2.0, 1.0, -4.0]),),
(2, Vectors.dense([4.0, 10.0, 8.0]),)
], ["id", "features"]) scaler = MaxAbsScaler(inputCol="features", outputCol="scaledFeatures")#最大最小值用于缩放 # 计算最大最小值用于缩放
scalerModel = scaler.fit(dataFrame)#fit与transform分开写,因为fit的数据还要用于测试集的变换 # 缩放幅度到[-1, 1]之间
scaledData = scalerModel.transform(dataFrame)
scaledData.select("features", "scaledFeatures").show() spark.stop()

 结果:

+--------------+----------------+
| features| scaledFeatures|
+--------------+----------------+
|[1.0,0.1,-8.0]|[0.25,0.01,-1.0]|
|[2.0,1.0,-4.0]| [0.5,0.1,-0.5]|
|[4.0,10.0,8.0]| [1.0,1.0,1.0]|
+--------------+----------------+

4.标准化

from __future__ import print_function
from pyspark.ml.feature import StandardScaler
from pyspark.sql import SparkSession spark = SparkSession\
.builder\
.appName("StandardScalerExample")\
.getOrCreate() dataFrame = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt")#libsvm数据格式,适用于存储稀疏数据: [label] [index1]:[value1] [index2]:[value2] …
scaler = StandardScaler(inputCol="features", outputCol="scaledFeatures",
withStd=True, withMean=False) # 计算均值方差等参数
scalerModel = scaler.fit(dataFrame) # 标准化
scaledData = scalerModel.transform(dataFrame)
scaledData.show() spark.stop()
+-----+--------------------+--------------------+
|label| features| scaledFeatures|
+-----+--------------------+--------------------+
| 0.0|(692,[127,128,129...|(692,[127,128,129...|
| 1.0|(692,[158,159,160...|(692,[158,159,160...|
| 1.0|(692,[124,125,126...|(692,[124,125,126...|
| 1.0|(692,[152,153,154...|(692,[152,153,154...|
| 1.0|(692,[151,152,153...|(692,[151,152,153...|
| 0.0|(692,[129,130,131...|(692,[129,130,131...|
| 1.0|(692,[158,159,160...|(692,[158,159,160...|
| 1.0|(692,[99,100,101,...|(692,[99,100,101,...|
| 0.0|(692,[154,155,156...|(692,[154,155,156...|
| 0.0|(692,[127,128,129...|(692,[127,128,129...|
| 1.0|(692,[154,155,156...|(692,[154,155,156...|
| 0.0|(692,[153,154,155...|(692,[153,154,155...|
| 0.0|(692,[151,152,153...|(692,[151,152,153...|
| 1.0|(692,[129,130,131...|(692,[129,130,131...|
| 0.0|(692,[154,155,156...|(692,[154,155,156...|
| 1.0|(692,[150,151,152...|(692,[150,151,152...|
| 0.0|(692,[124,125,126...|(692,[124,125,126...|
| 0.0|(692,[152,153,154...|(692,[152,153,154...|
| 1.0|(692,[97,98,99,12...|(692,[97,98,99,12...|
| 1.0|(692,[124,125,126...|(692,[124,125,126...|
+-----+--------------------+--------------------+
only showing top 20 rows
from __future__ import print_function
from pyspark.ml.feature import StandardScaler
from pyspark.sql import SparkSession spark = SparkSession\
.builder\
.appName("StandardScalerExample")\
.getOrCreate() dataFrame = spark.createDataFrame([
(0, Vectors.dense([1.0, 0.1, -8.0]),),
(1, Vectors.dense([2.0, 1.0, -4.0]),),
(2, Vectors.dense([4.0, 10.0, 8.0]),)
], ["id", "features"]) # 计算均值方差等参数
scalerModel = scaler.fit(dataFrame) # 标准化
scaledData = scalerModel.transform(dataFrame)
scaledData.show() spark.stop()

  结果:

+---+--------------+--------------------+
| id| features| scaledFeatures|
+---+--------------+--------------------+
| 0|[1.0,0.1,-8.0]|[0.65465367070797...|
| 1|[2.0,1.0,-4.0]|[1.30930734141595...|
| 2|[4.0,10.0,8.0]|[2.61861468283190...|
+---+--------------+--------------------+ 

5.添加多项式特征

from __future__ import print_function
from pyspark.ml.feature import PolynomialExpansion
from pyspark.ml.linalg import Vectors
from pyspark.sql import SparkSession spark = SparkSession\
.builder\
.appName("PolynomialExpansionExample")\
.getOrCreate() df = spark.createDataFrame([
(Vectors.dense([2.0, 1.0]),),
(Vectors.dense([0.0, 0.0]),),
(Vectors.dense([3.0, -1.0]),)
], ["features"]) polyExpansion = PolynomialExpansion(degree=3, inputCol="features", outputCol="polyFeatures")
polyDF = polyExpansion.transform(df) polyDF.show(truncate=False) spark.stop()

  结果:

+----------+------------------------------------------+
|features |polyFeatures |
+----------+------------------------------------------+
|[2.0,1.0] |[2.0,4.0,8.0,1.0,2.0,4.0,1.0,2.0,1.0] |
|[0.0,0.0] |[0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0] |
|[3.0,-1.0]|[3.0,9.0,27.0,-1.0,-3.0,-9.0,1.0,3.0,-1.0]|
+----------+------------------------------------------+

对离散型处理

0.独热向量编码

from __future__ import print_function
from pyspark.ml.feature import OneHotEncoder, StringIndexer
from pyspark.sql import SparkSession spark = SparkSession\
.builder\
.appName("OneHotEncoderExample")\
.getOrCreate() df = spark.createDataFrame([
(0, "a"),
(1, "b"),
(2, "c"),
(3, "a"),
(4, "a"),
(5, "c")
], ["id", "category"]) stringIndexer = StringIndexer(inputCol="category", outputCol="categoryIndex")#类别编码:出现频次越低,数值越大
model = stringIndexer.fit(df)
indexed = model.transform(df) encoder = OneHotEncoder(inputCol="categoryIndex", outputCol="categoryVec")
encoded = encoder.transform(indexed)
encoded.show() spark.stop()

  结果:

+---+--------+-------------+-------------+
| id|category|categoryIndex| categoryVec|
+---+--------+-------------+-------------+
| 0| a| 0.0|(2,[0],[1.0])|
| 1| b| 2.0| (2,[],[])|
| 2| c| 1.0|(2,[1],[1.0])|
| 3| a| 0.0|(2,[0],[1.0])|
| 4| a| 0.0|(2,[0],[1.0])|
| 5| c| 1.0|(2,[1],[1.0])|
+---+--------+-------------+-------------+

对文本型处理

0.去停用词

from __future__ import print_function
from pyspark.ml.feature import StopWordsRemover
from pyspark.sql import SparkSession spark = SparkSession\
.builder\
.appName("StopWordsRemoverExample")\
.getOrCreate() sentenceData = spark.createDataFrame([
(0, ["I", "saw", "the", "red", "balloon"]),
(1, ["Mary", "had", "a", "little", "lamb"])
], ["id", "raw"]) remover = StopWordsRemover(inputCol="raw", outputCol="filtered")
remover.transform(sentenceData).show(truncate=False)#truncate=False表示没有做截断,长的话可以试着截断观看结果 spark.stop()

  结果:

+---+----------------------------+--------------------+
|id |raw |filtered |
+---+----------------------------+--------------------+
|0 |[I, saw, the, red, balloon] |[saw, red, balloon] |
|1 |[Mary, had, a, little, lamb]|[Mary, little, lamb]|
+---+----------------------------+--------------------+

1.Tokenizer

from __future__ import print_function
from pyspark.ml.feature import Tokenizer, RegexTokenizer
from pyspark.sql.functions import col, udf
from pyspark.sql.types import IntegerType
from pyspark.sql import SparkSession spark = SparkSession\
.builder\
.appName("TokenizerExample")\
.getOrCreate() sentenceDataFrame = spark.createDataFrame([
(0, "Hi I heard about Spark"),
(1, "I wish Java could use case classes"),
(2, "Logistic,regression,models,are,neat")
], ["id", "sentence"]) tokenizer = Tokenizer(inputCol="sentence", outputCol="words") regexTokenizer = RegexTokenizer(inputCol="sentence", outputCol="words", pattern="\\W")#干掉空格部分,保留非空格部分 countTokens = udf(lambda words: len(words), IntegerType()) tokenized = tokenizer.transform(sentenceDataFrame)
tokenized.select("sentence", "words")\
.withColumn("tokens", countTokens(col("words"))).show(truncate=False) regexTokenized = regexTokenizer.transform(sentenceDataFrame)
regexTokenized.select("sentence", "words") \
.withColumn("tokens", countTokens(col("words"))).show(truncate=False) spark.stop()

  结果:

+-----------------------------------+------------------------------------------+------+
|sentence |words |tokens|
+-----------------------------------+------------------------------------------+------+
|Hi I heard about Spark |[hi, i, heard, about, spark] |5 |
|I wish Java could use case classes |[i, wish, java, could, use, case, classes]|7 |
|Logistic,regression,models,are,neat|[logistic,regression,models,are,neat] |1 |
+-----------------------------------+------------------------------------------+------+ +-----------------------------------+------------------------------------------+------+
|sentence |words |tokens|
+-----------------------------------+------------------------------------------+------+
|Hi I heard about Spark |[hi, i, heard, about, spark] |5 |
|I wish Java could use case classes |[i, wish, java, could, use, case, classes]|7 |
|Logistic,regression,models,are,neat|[logistic, regression, models, are, neat] |5 |
+-----------------------------------+------------------------------------------+------+

2.count_vectorizer

from __future__ import print_function
from pyspark.sql import SparkSession
from pyspark.ml.feature import CountVectorizer spark = SparkSession\
.builder\
.appName("CountVectorizerExample")\
.getOrCreate() df = spark.createDataFrame([
(0, "a b c".split(" ")),
(1, "a b b c a".split(" "))
], ["id", "words"]) cv = CountVectorizer(inputCol="words", outputCol="features", vocabSize=3, minDF=2.0) model = cv.fit(df) result = model.transform(df)
result.show(truncate=False) spark.stop()

  结果:

+---+---------------+-------------------------+
|id |words |features |
+---+---------------+-------------------------+
|0 |[a, b, c] |(3,[0,1,2],[1.0,1.0,1.0])|
|1 |[a, b, b, c, a]|(3,[0,1,2],[2.0,2.0,1.0])|
+---+---------------+-------------------------+

3.TF-IDF权重

from __future__ import print_function
from pyspark.ml.feature import HashingTF, IDF, Tokenizer
from pyspark.sql import SparkSession spark = SparkSession\
.builder\
.appName("TfIdfExample")\
.getOrCreate() sentenceData = spark.createDataFrame([
(0.0, "Hi I heard about Spark"),
(0.0, "I wish Java could use case classes"),
(1.0, "Logistic regression models are neat")
], ["label", "sentence"]) tokenizer = Tokenizer(inputCol="sentence", outputCol="words")#Tokenizer适合英文分词,spark中的中文分词效果最好的是NLPIR,jieba效果不是最好的
wordsData = tokenizer.transform(sentenceData) hashingTF = HashingTF(inputCol="words", outputCol="rawFeatures", numFeatures=20)
featurizedData = hashingTF.transform(wordsData) idf = IDF(inputCol="rawFeatures", outputCol="features")
idfModel = idf.fit(featurizedData)
rescaledData = idfModel.transform(featurizedData) rescaledData.select("label", "features").show() spark.stop()

  结果:

+-----+--------------------+
|label| features|
+-----+--------------------+
| 0.0|(20,[0,5,9,17],[0...|
| 0.0|(20,[2,7,9,13,15]...|
| 1.0|(20,[4,6,13,15,18...|
+-----+--------------------+

4.n-gram语言模型

from __future__ import print_function
from pyspark.ml.feature import NGram
from pyspark.sql import SparkSession spark = SparkSession\
.builder\
.appName("NGramExample")\
.getOrCreate() #Hanmeimei loves LiLei
#LiLei loves Hanmeimei wordDataFrame = spark.createDataFrame([
(0, ["Hi", "I", "heard", "about", "Spark"]),
(1, ["I", "wish", "Java", "could", "use", "case", "classes"]),
(2, ["Logistic", "regression", "models", "are", "neat"])
], ["id", "words"]) ngram = NGram(n=2, inputCol="words", outputCol="ngrams") ngramDataFrame = ngram.transform(wordDataFrame)
ngramDataFrame.select("ngrams").show(truncate=False) spark.stop()

  结果:

+------------------------------------------------------------------+
|ngrams |
+------------------------------------------------------------------+
|[Hi I, I heard, heard about, about Spark] |
|[I wish, wish Java, Java could, could use, use case, case classes]|
|[Logistic regression, regression models, models are, are neat] |
+------------------------------------------------------------------+

高级变换

0.SQL变换

from __future__ import print_function
from pyspark.ml.feature import SQLTransformer
from pyspark.sql import SparkSession spark = SparkSession\
.builder\
.appName("SQLTransformerExample")\
.getOrCreate() df = spark.createDataFrame([
(0, 1.0, 3.0),
(2, 2.0, 5.0)
], ["id", "v1", "v2"]) sqlTrans = SQLTransformer(
statement="SELECT *, (v1 + v2) AS v3, (v1 * v2) AS v4 FROM __THIS__")
sqlTrans.transform(df).show() spark.stop()

  结果:

+---+---+---+---+----+
| id| v1| v2| v3| v4|
+---+---+---+---+----+
| 0|1.0|3.0|4.0| 3.0|
| 2|2.0|5.0|7.0|10.0|
+---+---+---+---+----+

1.R公式变换

from __future__ import print_function
from pyspark.ml.feature import RFormula
from pyspark.sql import SparkSession spark = SparkSession\
.builder\
.appName("RFormulaExample")\
.getOrCreate() dataset = spark.createDataFrame(
[(7, "US", 18, 1.0),
(8, "CA", 12, 0.0),
(9, "NZ", 15, 0.0)],
["id", "country", "hour", "clicked"]) formula = RFormula(
formula="clicked ~ country + hour",
featuresCol="features",
labelCol="label") output = formula.fit(dataset).transform(dataset)
output.select("features", "label").show() spark.stop()

  结果:

+--------------+-----+
| features|label|
+--------------+-----+
|[0.0,0.0,18.0]| 1.0|
|[1.0,0.0,12.0]| 0.0|
|[0.0,1.0,15.0]| 0.0|
+--------------+-----+
												

Spark机器学习基础-特征工程的更多相关文章

  1. Spark机器学习基础一

    特征工程 对连续值处理 0.binarizer/二值化 from __future__ import print_function from pyspark.sql import SparkSessi ...

  2. 什么是机器学习的特征工程?【数据集特征抽取(字典,文本TF-Idf)、特征预处理(标准化,归一化)、特征降维(低方差,相关系数,PCA)】

    2.特征工程 2.1 数据集 2.1.1 可用数据集 Kaggle网址:https://www.kaggle.com/datasets UCI数据集网址: http://archive.ics.uci ...

  3. Python数据科学手册-机器学习之特征工程

    特征工程常见示例: 分类数据.文本.图像. 还有提高模型复杂度的 衍生特征 和 处理 缺失数据的填充 方法.这个过程被叫做向量化.把任意格式的数据 转换成具有良好特性的向量形式. 分类特征 比如房屋数 ...

  4. spark 机器学习基础 数据类型

    spark的机器学习库,包含常见的学习算法和工具如分类.回归.聚类.协同过滤.降维等使用算法时都需要指定相应的数据集,下面为大家介绍常用的spark ml 数据类型.1.本地向量(Local Vect ...

  5. Spark机器学习基础三

    监督学习 0.线性回归(加L1.L2正则化) from __future__ import print_function from pyspark.ml.regression import Linea ...

  6. Spark机器学习基础二

    无监督学习 0.K-means from __future__ import print_function from pyspark.ml.clustering import KMeans #from ...

  7. Spark机器学习基础-监督学习

    监督学习 0.线性回归(加L1.L2正则化) from __future__ import print_function from pyspark.ml.regression import Linea ...

  8. Spark机器学习基础-无监督学习

    0.K-means from __future__ import print_function from pyspark.ml.clustering import KMeans#硬聚类 #from p ...

  9. 如何用Python做自动化特征工程

    机器学习的模型训练越来越自动化,但特征工程还是一个漫长的手动过程,依赖于专业的领域知识,直觉和数据处理.而特征选取恰恰是机器学习重要的先期步骤,虽然不如模型训练那样能产生直接可用的结果.本文作者将使用 ...

随机推荐

  1. 001 安装mysql

    在安装docker之后,安装一个mysql的容器试试手.可以参考违章: URL: https://www.cnblogs.com/limingxie/p/8655457.html

  2. Hystrix原理与实战(转)

    背景 分布式系统环境下,服务间类似依赖非常常见,一个业务调用通常依赖多个基础服务.如下图,对于同步调用,当库存服务不可用时,商品服务请求线程被阻塞,当有大批量请求调用库存服务时,最终可能导致整个商品服 ...

  3. python-learning-第二季-数据库编程

    https://www.bjsxt.com/down/8468.html 代码实现: #coding:utf- #导入模块 import sqlite3 #创建connect连接 con = sqli ...

  4. realsense SDK编译 debug

    1>------ 已启动全部重新生成: 项目: ZERO_CHECK, 配置: Debug x64 ------1> Checking Build System1> CMake do ...

  5. QVector init error

    QMetaType::registerType: Binary compatibility break -- Size mismatch for type 'PtsData' [1025]. Prev ...

  6. PAT 甲级 1070 Mooncake (25 分)(结构体排序,贪心,简单)

    1070 Mooncake (25 分)   Mooncake is a Chinese bakery product traditionally eaten during the Mid-Autum ...

  7. LeetCode_226. Invert Binary Tree

    226. Invert Binary Tree Easy Invert a binary tree. Example: Input: 4 / \ 2 7 / \ / \ 1 3 6 9 Output: ...

  8. DNS解析问题

    DNS解析问题,在/etc/resolv.conf文件中加如下一行: nameserver 8.8.8.8 即使用谷歌的域名服务器 如下问题都是DNS解析问题: apt-get update 异常 T ...

  9. vue 组件传值$attrs $listeners $bus provide/inject $parent/$children

    $attrs 包含了父作用域中不作为prop被识别的特性绑定,当一个组件没有声明props时,这里会包含所有父作用域的绑定, $listeneers 包含了父作用域中的v-on事件监听器,它可以通过v ...

  10. 集合运算 & 聚合函数

    SQL 查询之集合运算 & 聚合函数   1.集合运算 1.1.并集运算 UNION 1.2.差集运算 EXCEPT 1.3.交集运算 INTERSECT 1.4.集合运算小结 2.聚合函数 ...