Seaborn(二)之数据集分布可视化
Seaborn(二)之数据集分布可视化
当处理一个数据集的时候,我们经常会想要先看看特征变量是如何分布的。这会让我们对数据特征有个很好的初始认识,同时也会影响后续数据分析以及特征工程的方法。本篇将会介绍如何使用 seaborn 的一些工具来检测单变量和双变量分布情况。
%matplotlib inline
import numpy as np
import pandas as pd
from scipy import stats, integrate
import matplotlib.pyplot as plt
import seaborn as sns
sns.set(color_codes=True)
np.random.seed(sum(map(ord, "distributions")))
注意:这里的数据集是随机产生的分布数据,由 numpy 生成,数据类型是ndarray。当然,pandas 的 Series 数据类型也是可以使用的,比如我们经常需要从 DataFrame 表中提取某一特征(某一列)来查看分布情况。
绘制单变量分布
在 seaborn 中,快速观察单变量分布的最方便的方法就是使用 distplot() 函数。默认会使用柱状图(histogram)来绘制,并提供一个适配的核密度估计(KDE)。
x = np.random.normal(size = 100)
sns.distplot(x)
<matplotlib.axes._subplots.AxesSubplot at 0x1a182da940>
直方图(histograms)
直方图是比较常见的,并且在 matplotlib 中已经存在了 hist 函数。直方图在横坐标的数据值范围内均等分的形成一定数量的数据段(bins),并在每个数据段内用矩形条(bars)显示y轴观察数量的方式,完成了对的数据分布的可视化展示。
为了说明这个,我们可以移除 kde plot,然后添加 rug plot(在每个观察点上的垂直小标签)。当然,你也可以使用 rug plot 自带的 rugplot() 函数,但是也同样可以在 distplot 中实现:
sns.distplot(x, kde = False, rug = True)
<matplotlib.axes._subplots.AxesSubplot at 0x1a1867d358>
当绘制直方图时,你最需要确定的参数是矩形条的数目以及如何放置它们。distplot()使用了一个简单的规则推测出默认情况下最合适的数量,但是或多或少的对 bins 数量进行一些尝试也许能找出数据的其它特征:
sns.distplot(x, bins=20, kde=False, rug=True)
<matplotlib.axes._subplots.AxesSubplot at 0x1a1882f8d0>
核密度估计(Kernel density estimation)
核密度估计可能不被大家所熟悉,但它对于绘制分布的形状是一个非常有用的工具。就像直方图那样,KDE plots 会在一个轴上通过高度沿着其它轴将观察的密度编码。
sns.distplot(x, hist=False, rug=True);
绘制 KDE 比绘制直方图需要更多的计算。它的计算过程是这样的,每个观察点首先都被以这个点为中心的正态分布曲线所替代。
x = np.random.normal(0, 1, size=30)
bandwidth = 1.06 * x.std() * x.size ** (-1 / 5.)
support = np.linspace(-4, 4, 200)
kernels = []
for x_i in x:
kernel = stats.norm(x_i, bandwidth).pdf(support)
kernels.append(kernel)
plt.plot(support, kernel, color="r")
sns.rugplot(x, color=".2", linewidth=3);
然后,这些替代的曲线进行加和,并计算出在每个点的密度值。最终生成的曲线被归一化,以使得曲线下面包围的面积是1。
density = np.sum(kernels, axis=0)
density /= integrate.trapz(density, support)
plt.plot(support, density)
[<matplotlib.lines.Line2D at 0x1a18bf3048>]
我们可以看到,如果我们使用 kdeplot() 函数,我们可以得到相同的曲线。这个函数实际上也被 distplot() 所使用,但是如果你就只想要密度估计,那么 kdeplot() 会提供一个直接的接口更简单的操作其它选项。
sns.kdeplot(x, shade=True)
<matplotlib.axes._subplots.AxesSubplot at 0x1a18c8b518>
KDE 的带宽参数(bw)控制着密度估计曲线的宽窄形状,有点类似直方图中的 bins 参数的作用。它对应着我们上面绘制的 KDE 的宽度。默认情况下,函数会按照一个通用的参考规则来估算出一个合适的值,但是尝试更大或者更小也可能会有帮助:
sns.kdeplot(x)
sns.kdeplot(x, bw=.2, label="bw: 0.2")
sns.kdeplot(x, bw=2, label="bw: 2")
plt.legend()
如上所述,高斯KDE过程的意味着估计延续了数据集中最大和最小的值。 可以通过cut参数来控制绘制曲线的极值值的距离; 然而,这只影响曲线的绘制方式,而不是曲线如何拟合:
sns.kdeplot(x, shade=True, cut=0)
sns.rugplot(x);
拟合参数分布
也可以使用distplot()将参数分布拟合到数据集,并可视化地评估其与观察数据的对应程度:
x = np.random.gamma(6, size=200)
sns.distplot(x, kde=False, fit=stats.gamma);
绘制双变量分布
对于双变量分布的可视化也是非常有用的。在 seaborn 中最简单的方法就是使用 joinplot() 函数,它能够创建一个多面板图形来展示两个变量之间的联合关系,以及每个轴上单变量的分布情况。
mean, cov = [0, 1], [(1, .5), (.5, 1)]
data = np.random.multivariate_normal(mean, cov, 200)
df = pd.DataFrame(data, columns=["x", "y"])
Scatterplots
双变量分布最熟悉的可视化方法无疑是散点图了,在散点图中每个观察结果以x轴和y轴值所对应的点展示。你可以用 matplotlib 的 plt.scatter 函数来绘制一个散点图,它也是jointplot()函数显示的默认方式。
sns.jointplot(x="x", y="y", data=df)
<seaborn.axisgrid.JointGrid at 0x1a18df47f0>
Hexbin plots
直方图 histogram 的双变量类似图被称为 “hexbin” 图,因为它展示了落在六角形箱内的观测量。这种绘图对于相对大的数据集效果最好。它可以通过 matplotlib 的 plt.hexbin 函数使用,也可以作为 jointplot 的一种类型参数使用。它使用白色背景的时候视觉效果最好。
x, y = np.random.multivariate_normal(mean, cov, 1000).T
with sns.axes_style("white"):
sns.jointplot(x=x, y=y, kind="hex", color="k");
Kernel density estimation
还使用上面描述的核密度估计过程来可视化双变量分布。在 seaborn 中,这种绘图以等高线图展示,并且可以作为 jointplot()的一种类型参数使用。
sns.jointplot(x="x", y="y", data=df, kind="kde");
如果你希望让双变量密度看起来更连续,您可以简单地增加 n_levels 参数增加轮廓级数:
f, ax = plt.subplots(figsize=(6, 6))
cmap = sns.cubehelix_palette(as_cmap=True, dark=0, light=1, reverse=True)
sns.kdeplot(df.x, df.y, cmap=cmap, n_levels=60, shade=True);
jointplot()函数使用JointGrid来管理图形。为了获得更多的灵活性,您可能需要直接使用JointGrid绘制图形。jointplot()在绘制后返回JointGrid对象,你可以用它来添加更多层或调整可视化的其他方面:
g = sns.jointplot(x="x", y="y", data=df, kind="kde", color="m")
g.plot_joint(plt.scatter, c="w", s=30, linewidth=1, marker="+")
g.ax_joint.collections[0].set_alpha(0)
g.set_axis_labels("$X$", "$Y$");
可视化数据集成对关系
为了绘制数据集中多个成对的双变量,你可以使用 pairplot() 函数。这创建了一个轴矩阵,并展示了在一个 DataFrame 中每对列的关系。默认情况下,它也绘制每个变量在对角轴上的单变量。
iris = sns.load_dataset("iris")
sns.pairplot(iris)
<seaborn.axisgrid.PairGrid at 0x1a19742278>
就像 joinplot() 和 JoinGrid 之间的关系,pairplot() 函数建立在 PairGrid 对象之上,直接使用可以更灵活。
g = sns.PairGrid(iris)
g.map_diag(sns.kdeplot)
g.map_offdiag(sns.kdeplot, cmap="Blues_d", n_levels=6)
<seaborn.axisgrid.PairGrid at 0x1a1b5ed978>
Seaborn(二)之数据集分布可视化的更多相关文章
- seaborn教程3——数据集的分布可视化
原文转载:https://segmentfault.com/a/1190000015006667 Seaborn学习大纲 seaborn的学习内容主要包含以下几个部分: 风格管理 绘图风格设置 颜色风 ...
- seaborn教程4——分类数据可视化
https://segmentfault.com/a/1190000015310299 Seaborn学习大纲 seaborn的学习内容主要包含以下几个部分: 风格管理 绘图风格设置 颜色风格设置 绘 ...
- Python图表数据可视化Seaborn:1. 风格| 分布数据可视化-直方图| 密度图| 散点图
conda install seaborn 是安装到jupyter那个环境的 1. 整体风格设置 对图表整体颜色.比例等进行风格设置,包括颜色色板等调用系统风格进行数据可视化 set() / se ...
- LUNA16数据集(二)肺结节可视化
在检测到肺结节后,还需要可视化,这样才能为诊断服务. 我使用的项目地址为:https://github.com/wentaozhu/DeepLung 项目基于论文:DeepLung: Deep 3D ...
- Python图表数据可视化Seaborn:2. 分类数据可视化-分类散点图|分布图(箱型图|小提琴图|LV图表)|统计图(柱状图|折线图)
1. 分类数据可视化 - 分类散点图 stripplot( ) / swarmplot( ) sns.stripplot(x="day",y="total_bill&qu ...
- pyecharts实现星巴克门店分布可视化分析
项目介绍 使用pyecharts对星巴克门店分布进行可视化分析: 全球门店分布/拥有星巴克门店最多的10个国家或地区: 拥有星巴克门店最多的10个城市: 门店所有权占比: 中国地区门店分布热点图. 数 ...
- Google机器学习教程心得(二)决策树与可视化
Visualizing a Decision Tree Google Machine Learning Recipes 2 官方中文博客 http://chinagdg.org/2016/03/mac ...
- NoSql非关系型数据库之MongoDB应用(二):安装MongoDB可视化工具
业精于勤,荒于嬉:行成于思,毁于随. 我们上次说到NoSql非关系型数据库之MongoDB应用(一):安装MongoDB服务 这次我们介绍安装 NoSQL Manager for MongoDB 可 ...
- Hadoop学习------Hadoop安装方式之(二):伪分布部署
要想发挥Hadoop分布式.并行处理的优势,还须以分布式模式来部署运行Hadoop.单机模式是指Hadoop在单个节点上以单个进程的方式运行,伪分布模式是指在单个节点上运行NameNode.DataN ...
随机推荐
- Drawable: getIntrinsicWidth()和getIntrinsicHeight()方法的使用误区
经常会使用上述两个API来获取ImageView中显示图片的大小,但是在某些情况下,这两个API返回的大小可能与原图的大小不一致,比如原图大小是72*72,分别把原图放置在xhdpi,xxhdpi,x ...
- Android简单实现滚动悬停效果
import android.content.Context; import android.support.design.widget.TabLayout; import android.suppo ...
- 010-多线程-JUC集合-Queue-ConcurrentLinkedQueue
一.概述 ConcurrentLinkedQueue是线程安全的队列,它适用于“高并发”的场景. 它是一个基于链接节点的无界线程安全队列,按照 FIFO(先进先出)原则对元素进行排序.队列元素中不可以 ...
- java如何获取项目的工作目录
package maptoxml; public class Tfff { public static void main(String[] args) { System.out.println(&q ...
- java判断请求是否ajax异步请求
java判断请求是否ajax异步请求 解决方法: if (request.getHeader("x-requested-with") != null && re ...
- ubuntu18.04 install rar
sudo apt-get update #如果好久没有更新资源建议update一次 sudo apt-get install rar #安装rar sudo apt-get install unrar ...
- shutter 安装和设置快捷键
1. 打开系统设置 2. 打开 Keyboard 键盘设置 3. 添加成功的状态 4. 单击右侧 Disabled,然后快速按下 Ctrl+Alt+A 如下图 5. Ctrl+Alt+A 测试OK. ...
- 【Leetcode_easy】703. Kth Largest Element in a Stream
problem 703. Kth Largest Element in a Stream 题意: solution1: priority_queue这个类型没有看明白... class KthLarg ...
- self-attention详解
编写你自己的 Keras 层 对于简单.无状态的自定义操作,你也许可以通过 layers.core.Lambda 层来实现.但是对于那些包含了可训练权重的自定义层,你应该自己实现这种层. 这是一个 K ...
- windows服务器入门 php的安装
下载PHP安装包(下载地址: http://windows.php.net/download/ ),本文档以5.3版本为例,选择如下图对应的安装包: 下载完成后进行安装PHP,需要选择Web服务时,选 ...