CCPC-Wannafly & Comet OJ 夏季欢乐赛(2019)F
F比较友善(相较于E),我们发现如果i和j是满足条件的两个下标,那么:
a[i]-2*b[i] + a[j]-2*b[j] >=0 或者 b[i]-2*a[i] + b[j]-2*a[j] >=0。
又因为两个条件不可能同时成立(你把左边式子的不等号左边全移到右边试试),所以我们可以分开算两种情况并最后把答案加起来。。。(其实两种情况是对称的,所以可以直接用一个函数解决,两次调用之间把所有 a[]与b[] swap一下就好啦)
对于每种情况,我们不妨把下标小的移项到右边,然后发现这就是一个简单的二维偏序问题啦,树状数组轻松过w
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int ha=1e9+7,N=1e5+5; int a[N],b[N],c[N],n,m,f[N*2];
int p[N][2],num[N*2],ky,ans; inline int add(int x,int y){ x+=y; return x>=ha?x-ha:x;}
inline void ADD(int &x,int y){ x+=y; if(x>=ha) x-=ha;} inline int read(){
int x=0; char ch=getchar();
for(;!isdigit(ch);ch=getchar());
for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0';
return x;
} inline void update(int x,int y){
for(;x<=ky;x+=x&-x) ADD(f[x],y);
} inline int query(int x){
int an=0;
for(;x;x-=x&-x) ADD(an,f[x]);
return an;
} inline void solve(){
memset(f,0,sizeof(f)),ky=0; for(int i=1;i<=n;i++){
p[i][0]=a[i]-2*b[i],p[i][1]=-p[i][0];
num[++ky]=p[i][0],num[++ky]=p[i][1];
} sort(num+1,num+ky+1),ky=unique(num+1,num+ky+1)-num-1; for(int i=1;i<=n;i++)
for(int j=0;j<2;j++) p[i][j]=lower_bound(num+1,num+ky+1,p[i][j])-num; for(int i=1;i<=n;i++) update(p[i][1],c[i]),ADD(ans,c[i]*(ll)query(p[i][0])%ha);
} int main(){
n=read();
for(int i=1;i<=n;i++) a[i]=read(),b[i]=read(),c[i]=read(); solve();
for(int i=1;i<=n;i++) swap(a[i],b[i]);
solve(); printf("%d\n",ans);
return 0;
}
CCPC-Wannafly & Comet OJ 夏季欢乐赛(2019)F的更多相关文章
- [CCPC-Wannafly & Comet OJ 夏季欢乐赛(2019)]飞行棋
题目链接:https://www.cometoj.com/contest/59/problem/E?problem_id=2714 求期望并且一堆转移基本上就是期望dp了(叉腰 照常的设dp[i]表示 ...
- Comet OJ CCPC-Wannafly & Comet OJ 夏季欢乐赛(2019)
Preface 在一个月黑风高的夜晚我这个蒟蒻正踌躇着打什么比赛好 是继续做一场AGC,还是去刷一场CF 然后,一道金光闪过(滑稽),我们的红太阳bzt给我指明了方向: 你太菜了,我知道有一场很水的比 ...
- CCPC-Wannafly & Comet OJ 夏季欢乐赛(2019)D
题面 一开始想到一个 O(N^2) 做法,先把x排序,然后顺次枚举x最大的点,看向前最多可以保留多少点 (也就是先不管正方形的上下长度限制,先考虑左右的限制).然后再对这些点做一遍类似的..(等等这么 ...
- CCPC-Wannafly & Comet OJ 夏季欢乐赛(2019)E
题面 这个题暴好啊,考了很多东西. 首先设f(x)为离终点还有x步要走的期望步数,我们可以发现 : 1.x>=k时,x可以转移到的点的下标都<x. 2.x<k时,则可能走回到x或者下 ...
- CCPC-Wannafly & Comet OJ 夏季欢乐赛(2019)H
题面 被神葱安利安利了本题. 我们贪心的想,如果有那么一坨相等的学号,那么肯定是保留一个人学号不变,其余的再推到学号+1的位置(准备与那个位置的其他人合并)处理. 虽然a[i]可大至1e18,不过如果 ...
- CCPC-Wannafly & Comet OJ 夏季欢乐赛(2019)G
题面 一道暴水的dp....别问我为什么直接打开了G题,我只是对题目名称感兴趣而已.... #include<bits/stdc++.h> #define ll long long usi ...
- Comet OJ 夏季欢乐赛 篮球校赛
Comet OJ 夏季欢乐赛 篮球校赛 题目传送门 题目描述 JWJU注重培养学生的"唱,跳,rap,篮球"能力.于是每年JWJU都会举办篮球校赛,来给同学们一个切磋篮球技术的平台 ...
- Comet OJ 夏季欢乐赛 Gree的心房
Comet OJ 夏季欢乐赛 Gree的心房 题目传送门 题目描述 据说每一个走进Gree哥哥心房的小姑娘都没有能够再走出来-- 我们将Gree哥哥的心房抽象成一个n \times mn×m的地图,初 ...
- Comet OJ 夏季欢乐赛 分配学号
Comet OJ 夏季欢乐赛 H 分配学号 题目传送门 题目描述 今天,是JWJU给同学们分配学号的一天!为了让大家尽可能的得到自己想要的学号,鸡尾酒让大家先从 [1,10^{18}][1,1018] ...
随机推荐
- linux 百度ping不通解决
很长时间没有使用Liunx了,上来发现linux上面没有办法ping百度了.(这样的问题>>..ping:www.baidu.com:Temporaryfailureinnameresol ...
- BufferedImage类、Image类、Graphics类
BufferedImage Image是一个抽象类,BufferedImage是其实现类,是一个带缓冲区图像类,主要作用是将一幅图片加载到内存中(BufferedImage生成的图片在内存里有一个图像 ...
- Spring Boot 版本支持
一.Spring Boot 版本支持 Spring Boot Spring Framework Java Maven Gradle 1.2.0之前版本 6 3.0+ 1.6+ 1.2.0 4.1. ...
- html homework27
1. 使用框架完成如下功能 将框架先上下分割成两部分(上半部分的为TopFrame).再将下半部分垂直分割为两部分(左侧为BottomLeftFrame,右侧为BottomRightFrame),为T ...
- 浅读vuex源码,了解vuex基本原理
极简版vuex代码 class KVuex { constructor (options) { this.state = options.state this.mutations = options. ...
- (一)初识JavaFX
JavaFX是一个强大的图形和多媒体处理工具包集合,它允许开发者来设计.创建.测试.调试和部署富客户端程序,并且和Java一样跨平台. JavaFX应用程序 由于JavaFX库被写成了Java API ...
- shiro学习(四、shiro集成spring+springmvc)
依赖:spring-context,spring-MVC,shiro-core,shiro-spring,shiro-web 实话实说:web.xml,spring,springmvc配置文件好难 大 ...
- Js的原型和原型链讲解
原型:每个对象都会在其内部初始化一个属性,就是prototype 原型链:当我们访问一个对象的属性时,如果这个对象内部不存在这个属性,那么他就会去prototype中去找,这个prototype中会有 ...
- CSS3总结七:变换(transform)
2D视图模型解析 3D视图模型解析 平移 旋转 伸缩 扭曲 z轴方向平移与perspective的神秘关系 matrix()终极变幻的方法 一.2D视图 2D视图就是默认平面上的每个点都与视线垂直,图 ...
- javaScript基础题
1.介绍JavaScript的基本数据类型 Number.Boolean.String.underfind.null Object是JavaScript中所有对象的父对象 数据封装类对象:Object ...