题意:给定n个数ai(n<=1e6,ai<=1e6),定义,并且fac(l,r)为mul(l,r)的不同质因数的个数,求

思路:可以先用欧拉筛求出1e6以内的所有质数,然后对所有ai判断,如果ai不是质数就利用唯一分解定理计算其所有质因数。然后按照顺序依次计算每个质因子的贡献。假设n=5,对质因子2,依次记录它在数组出现的下标,如果它在2、4下标出现了,那么它的贡献即为所有包含2或4的区间个数,逆向计算,即所有区间个数-不包含2和4的区间个数,即

n(n+1)/2-m1(m1+1)/2-m2(m2+1)/2-m3(m3+1)/2,其中m1=2-1-0=1,m2=3-2=1,m3=5-4=1,即3块不包含2和4的子区间长度。

AC代码:

#include<cstdio>
#include<cstring>
#include<queue>
#include<vector>
using namespace std; typedef long long LL;
const int maxn=1e6+;
int n,a[maxn],cnt,vis[maxn],prime[maxn];
int pre[maxn],vis1[maxn];
LL ans,cs; void Eular(){
for(int i=;i<maxn;++i){
if(!vis[i]) prime[cnt++]=i;
for(int j=;j<cnt&&i*prime[j]<maxn;++j){
vis[i*prime[j]]=;
if(i%prime[j]==) break;
}
}
} void solve(int id,int x){
if(!vis1[x]){
vis1[x]=;
ans+=cs;
}
LL t=id--pre[x];
pre[x]=id;
ans-=1LL*t*(t+)/;
} int main(){
Eular();
scanf("%d",&n);
cs=1LL*n*(n+)/;
for(int i=;i<=n;++i)
scanf("%d",&a[i]);
for(int i=;i<=n;++i){
if(a[i]==) continue;
if(!vis[a[i]]){
solve(i,a[i]);
}
else{
int tmp=a[i];
for(int j=;j*j<=tmp;++j){
if(tmp%j==){
while(tmp%j==) tmp/=j;
solve(i,j);
}
}
if(tmp!=){
solve(i,tmp);
}
}
}
for(int i=;i<cnt;++i){
int t=pre[prime[i]];
if(t){
t=n-t;
ans-=1LL*t*(t+)/;
}
}
printf("%lld\n",ans);
}

2018南京icpc-J-Prime Game (欧拉筛+唯一分解定理)的更多相关文章

  1. hdu2421-Deciphering Password-(欧拉筛+唯一分解定理+积性函数+立方求和公式)

    Deciphering Password Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  2. hdu3826-Squarefree number-(欧拉筛+唯一分解定理)

    Squarefree number Time Limit: 10000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  3. hdu4497-GCD and LCM-(欧拉筛+唯一分解定理+组合数)

    GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total ...

  4. 欧拉筛 线性筛 素数+莫比乌斯的mu[]

    https://blog.csdn.net/qq_39763472/article/details/82428602 模板来自https://blog.csdn.net/Avalon_cc/artic ...

  5. 2018 南京预选赛 J Sum ( 欧拉素数筛 、Square-free Number、DP )

    题目链接 题意 : 定义不能被平方数整除的数为 Square-free Number 定义 F(i) = 有几对不同的 a 和 b 使得 i = a * b 且 a .b 都是 Square-free ...

  6. 2018ICPC 南京Problem J. Prime Game

    题目: 题意:给出一个序列a1,⋯,ana1,⋯,an.fac(l,r)fac(l,r)为mul(l,r)mul(l,r)中不同质因数的个数. 请计算:                 ∑i=1n∑j ...

  7. 【BZOJ 2190】【SDOI 2008】仪仗队 欧拉筛

    欧拉筛模板题 #include<cstdio> using namespace std; const int N=40003; int num=0,prime[N],phi[N]; boo ...

  8. [51NOD1181]质数中的质数(质数筛法)(欧拉筛)

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1181 思路:欧拉筛出所有素数和一个数的判定,找到大于n的最小质 ...

  9. 素数筛&&欧拉筛

    折腾了一晚上很水的数论,整个人都萌萌哒 主要看了欧拉筛和素数筛的O(n)的算法 这个比那个一长串英文名的算法的优势在于没有多次计算一个数,也就是说一个数只筛了一次,主要是在%==0之后跳出实现的,具体 ...

随机推荐

  1. SIGAI机器学习第六集 决策树

    讲授决策树的基本概念,分类与回归树的原理,决策树的表示能力,决策树的训练算法,寻找最佳分裂的原理,叶子节点值的标记,属性缺失与替 代分裂,决策树的剪枝算法,决策树应用. 非常直观和易于理解的机器学习算 ...

  2. focusout([data],fn) 当元素失去焦点时触发 focusout 事件。

    focusout([data],fn) 概述 当元素失去焦点时触发 focusout 事件. focusout事件跟blur事件区别在于,他可以在父元素上检测子元素失去焦点的情况.大理石平台怎么样 参 ...

  3. 团队开发前端VUE项目代码规范

    团队开发前端VUE项目代码规范 2018年09月22日 20:18:11 我的小英短 阅读数 1658   一.规范目的: 统一编码风格,命名规范,注释要求,在团队协作中输出可读性强,易维护,风格一致 ...

  4. FHS 层级文件系统

  5. leetcode解题报告(5):Longest Consecutive Sequence

    描述 Given an unsorted array of integers, find the length of the longest consecutive elements sequence ...

  6. Python互联网金融之用户增长的数据逻辑

    怎样看待和应用我们互联网金融中的数据? 怎样进行数据分析? 互联网金融数据分析的三个层面: (1)指标层面 建立指标体系,观察指标涨跌的情况 (2)行业框架 不同的行业对于各个指标的权重不同 复投率 ...

  7. java试题复盘——9月26日

    5.在 JAVA 编程中, Java 编译器会将 Java 程序转换为(A) A.  字节码 B.  可执行代码 C.  机器代码 D.  以上都不对 解析: 编译器将Java源代码编译成字节码cla ...

  8. final关键字的理解

    final :最终作为一个修饰符 1.可以修饰类,函数,变量: 2.被final修饰的类不可以被继承: 3.被final修饰的方法不可以被复写: 4.被final修饰的变量是一个常量,只能赋值一次,既 ...

  9. open suse tumbleweed安装记录

    zypper install imagewriter cmake blender fontforge gimp digikam inkscape  kontact pitivi smplayer si ...

  10. Windows下使用cmd运行jar文件

    一般window系统下是不能直接运行jar文件的.(有些电脑可以,记得我以前的电脑是双击jar就可以运行的) 那么如何在windows下运行jar呢? 1.首先,电脑必须配置java运行环境jre-- ...