ROC曲线

对于0,1两类分类问题,一些分类器得到的结果往往不是0,1这样的标签,如神经网络,得到诸如0.5,0,8这样的分类结果。这时,我们人为取一个阈值,比如0.4,那么小于0.4的为0类,大于等于0.4的为1类,可以得到一个分类结果。同样,这个阈值我们可以取0.1,0.2等等。取不同的阈值,得到的最后的分类情况也就不同。

如下面这幅图:

蓝色表示原始为负类分类得到的统计图,红色为正类得到的统计图。那么我们取一条直线,直线左边分为负类,右边分为正,这条直线也就是我们所取的阈值。

阈值不同,可以得到不同的结果,但是由分类器决定的统计图始终是不变的。这时候就需要一个独立于阈值,只与分类器有关的评价指标,来衡量特定分类器的好坏。

还有在类不平衡的情况下,如正样本90个,负样本10个,直接把所有样本分类为正样本,得到识别率为90%。但这显然是没有意义的。

如上就是ROC曲线的动机。

关于两类分类问题,原始类为positive,negative,分类后的类别为p,n。排列组合后得到4种结果,如下:

于是我们得到四个指标,分别为真阳,伪阳;伪阴,真阴。

ROC空间将伪阳性率(FPR)定义为 X 轴,真阳性率(TPR)定义为 Y 轴。这两个值由上面四个值计算得到,公式如下:

TPR:在所有实际为阳性的样本中,被正确地判断为阳性之比率。

TPR=TP/(TP+FN)

FPR:在所有实际为阴性的样本中,被错误地判断为阳性之比率。

FPR=FP/(FP+TN)

放在具体领域来理解上述两个指标。

如在医学诊断中,判断有病的样本。

那么尽量把有病的揪出来是主要任务,也就是第一个指标TPR,要越高越好。

而把没病的样本误诊为有病的,也就是第二个指标FPR,要越低越好。

不难发现,这两个指标之间是相互制约的。如果某个医生对于有病的症状比较敏感,稍微的小症状都判断为有病,那么他的第一个指标应该会很高,但是第二个指标也就相应地变高。最极端的情况下,他把所有的样本都看做有病,那么第一个指标达到1,第二个指标也为1。

我们以FPR为横轴,TPR为纵轴,得到如下ROC空间。

我们可以看出,左上角的点(TPR=1,FPR=0),为完美分类,也就是这个医生医术高明,诊断全对。

点A(TPR>FPR),医生A的判断大体是正确的。中线上的点B(TPR=FPR),也就是医生B全都是蒙的,蒙对一半,蒙错一半;下半平面的点C(TPR<FPR),这个医生说你有病,那么你很可能没有病,医生C的话我们要反着听,为真庸医。

上图中一个阈值,得到一个点。现在我们需要一个独立于阈值的评价指标来衡量这个医生的医术如何,也就是遍历所有的阈值,得到ROC曲线。

还是一开始的那幅图,假设如下就是某个医生的诊断统计图,直线代表阈值。我们遍历所有的阈值,能够在ROC平面上得到如下的ROC曲线。

曲线距离左上角越近,证明分类器效果越好。

如上,是三条ROC曲线,在0.23处取一条直线。那么,在同样的低FPR=0.23的情况下,红色分类器得到更高的PTR。也就表明,ROC越往上,分类器效果越好。我们用一个标量值AUC来量化他。

AUC

AUC值为ROC曲线所覆盖的区域面积,显然,AUC越大,分类器分类效果越好。

AUC = 1,是完美分类器,采用这个预测模型时,不管设定什么阈值都能得出完美预测。绝大多数预测的场合,不存在完美分类器。

0.5 < AUC < 1,优于随机猜测。这个分类器(模型)妥善设定阈值的话,能有预测价值。

AUC = 0.5,跟随机猜测一样(例:丢铜板),模型没有预测价值。

AUC < 0.5,比随机猜测还差;但只要总是反预测而行,就优于随机猜测。

AUC的物理意义

假设分类器的输出是样本属于正类的socre(置信度),则AUC的物理意义为,任取一对(正、负)样本,正样本的score大于负样本的score的概率。

计算AUC:

第一种方法:AUC为ROC曲线下的面积,那我们直接计算面积可得。面积为一个个小的梯形面积之和。计算的精度与阈值的精度有关。

第二种方法:根据AUC的物理意义,我们计算正样本score大于负样本的score的概率。取N*M(N为正样本数,M为负样本数)个二元组,比较score,最后得到AUC。时间复杂度为O(N*M)。

第三种方法:与第二种方法相似,直接计算正样本score大于负样本的概率。我们首先把所有样本按照score排序,依次用rank表示他们,如最大score的样本,rank=n(n=N+M),其次为n-1。那么对于正样本中rank最大的样本,rank_max,有M-1个其他正样本比他score小,那么就有(rank_max-1)-(M-1)个负样本比他score小。其次为(rank_second-1)-(M-2)。最后我们得到正样本大于负样本的概率为

时间复杂度为O(N+M)。

MATLAB实现

MATLAB自带plotroc()方法,绘制ROC曲线,参数如下:

plotroc(targets,outputs);

第一个参数为测试样本的原始标签,第二个参数为分类后得到的标签。

两个为行或列向量,相同维数即可。

AUC matlab代码:

function [result]=AUC(test_targets,output)
%计算AUC值,test_targets为原始样本标签,output为分类器得到的标签
%均为行或列向量
[A,I]=sort(output);
M=0;N=0;
for i=1:length(output)
if(test_targets(i)==1)
M=M+1;
else
N=N+1;
end
end
sigma=0;
for i=M+N:-1:1
if(test_targets(I(i))==1)
sigma=sigma+i;
end
end
result=(sigma-(M+1)*M/2)/(M*N);

ROC和AUC————摘在网络的更多相关文章

  1. ROC和AUC介绍以及如何计算AUC ---好!!!!

    from:https://www.douban.com/note/284051363/?type=like 原帖发表在我的博客:http://alexkong.net/2013/06/introduc ...

  2. Area Under roc Curve(AUC)

    AUC是一种用来度量分类模型好坏的一个标准. ROC分析是从医疗分析领域引入了一种新的分类模型performance评判方法. ROC的全名叫做Receiver Operating Character ...

  3. 【转】ROC和AUC介绍以及如何计算AUC

    转自:https://www.douban.com/note/284051363/ ROC(Receiver Operating Characteristic)曲线和AUC常被用来评价一个二值分类器( ...

  4. ROC和AUC介绍以及如何计算AUC

    原文:http://alexkong.net/2013/06/introduction-to-auc-and-roc/ 为什么使用ROC曲线 既然已经这么多评价标准,为什么还要使用ROC和AUC呢?因 ...

  5. ROC和AUC理解

    一. ROC曲线概念 二分类问题在机器学习中是一个很常见的问题,经常会用到.ROC (Receiver Operating Characteristic) 曲线和 AUC (Area Under th ...

  6. 信息检索(IR)的评价指标介绍 - 准确率、召回率、F1、mAP、ROC、AUC

    原文地址:http://blog.csdn.net/pkueecser/article/details/8229166 在信息检索.分类体系中,有一系列的指标,搞清楚这些指标对于评价检索和分类性能非常 ...

  7. 评估分类器性能的度量,像混淆矩阵、ROC、AUC等

    评估分类器性能的度量,像混淆矩阵.ROC.AUC等 内容概要¶ 模型评估的目的及一般评估流程 分类准确率的用处及其限制 混淆矩阵(confusion matrix)是如何表示一个分类器的性能 混淆矩阵 ...

  8. ROC与AUC原理

    来自:https://blog.csdn.net/shenxiaoming77/article/details/72627882 来自:https://blog.csdn.net/u010705209 ...

  9. ROC,AUC,Precision,Recall,F1的介绍与计算(转)

    1. 基本概念 1.1 ROC与AUC ROC曲线和AUC常被用来评价一个二值分类器(binary classifier)的优劣,ROC曲线称为受试者工作特征曲线 (receiver operatin ...

随机推荐

  1. flex整页布局

    使用flex进行整页的三列布局,flex:1下的子元素无法铺满父级.给flex:1元素,添加stretch拉伸 display: flex; align-content: stretch; align ...

  2. 基于Dockerfile搭建JAVA Tomcat运行环境

    前言 在第一篇文字中,我们完全人工方式,一个命令一个命令输入,实现一个java tomcat运行环境,虽然也初见成效,但很累人.如果依靠依靠脚本构建一个Tomcat容器实例,一个命令可以搞定,何乐而不 ...

  3. C++实例 分解质因数

    分解质因数: 每个合数都可以写成几个质数相乘的形式.其中每个质数都是这个合数的因数,叫做这个合数的分解质因数.分解质因数只针对合数. 分解质因数的算式叫短除法.求一个数分解质因数,要从最小的质数除起, ...

  4. 内核模式构造-Semaphore构造(WaitLock)

    internal sealed class SimpleWaitLock : IDisposable { //(信号量)允许多个线程并发访问一个资源 //如果所有线程以只读方式访问资源则是安全的 pr ...

  5. Python——变量的作用域

    原创声明:本文系博主原创文章,转载及引用请注明出处. 1. 在编程语言中,变量都有一定的作用域,用来限定其生命周期,且不同类型的变量作用域不同. 在Python中解释器引用变量的顺序(优先级)为:当前 ...

  6. yum和rpm工具使用

    rpm命令 rpm -ivh package 安装 rpm -e package 卸载 rpm -Uvh 升级,如果已安装老版本,则升级;如果没安装,则直接安装 rpm -Fvh 升级,如果已安装老版 ...

  7. 与word、excel交互问题总结

    不同版本的Office对应的型号不同,往往问题出现在注册表中有多个版本,所以程序运行经常提示错误. 1.找不到引用microsoft.office.core解决办法 (引用中有感叹号,说明引用不成功) ...

  8. webpack官方文档分析(二):概念

    1.概念 webpack的核心是将JavaScript应用程序的静态捆绑模块.当webpack处理您的应用程序时,它会在内部构建一个依赖关系图,它映射您的项目所需的每个模块并生成一个或多个包. 从版本 ...

  9. 2.6.2 XML配置:使用testNG进行并发多浏览器测试

    测试类 1 @Parameters("browser") 定义browser参数. 在测试执行过程中,browser参数具体值由XML文件进行传递. 1 2 3 4 5 6 7 8 ...

  10. ESPCMS的CSRF添加管理员账号

    ESPCMS的CSRF添加管理员账号 前言 这里开始的思路是先注入进去 然后getshell 但是不关CSRF什么事 换思路 看了一下群消息  大哥发了一个视频  后台名称admin  admin12 ...