1.介绍

HOG(Histogram of Oriented Gradient)2005CVPR会议上,法国国家计算机科学及自动控制研究所的Dalal等人提出的一种解决人体目标检测的图像描述子,该方法使用梯度方向直方图(Histogram of Oriented Gradients,简称HOG)特征来表达人体,提取人体的外形信息和运动信息,形成丰富的特征集。

2.生成过程

1)图像归一化
归一化图像的主要目的是提高检测器对光照的鲁棒性,因为实际的人体目标可能出现的各种不同的场合,检测器,必须对光照不太敏感才会有好的效果。
 
2)利用一阶微分计算图像梯度
图像平滑 
对于灰度图像,一般为了去除噪点,所以会先利用离散高斯平滑模板进行平滑:高斯函数在不同平滑的尺度下进行对灰度图像进行平滑操作,Dalal等实验表明在下,人体检测效果最佳(即不做高斯平滑),使得错误率缩小了约一倍。不做平滑操作,可能原因:图像时基于边缘的,平滑会降低边缘信息的对比度,从而减少图像中的信号信息。
梯度法求图像梯度
一阶微分处理一般对灰度阶梯有较强的响应  
一阶微分:

对于函数f(x,y),在其坐标(x,y)上的梯度是通过如下二维列向量定义的: 
这个向量的模值由下式给出:

因为模值的计算开销比较大,一般可以按如下公式近似求解:

Dalal等人利用许多一阶微分模板进行求梯度近似值,但在实验中表明模板[-1,0,1]效果最好。
采用模板[-1,0,1]为例计算图像梯度以及方向,通过梯度模板计算水平和垂直方向的梯度分别如下:

其中,分别表示该像素点的水平,垂直梯度值。计算该像素点的梯度值(梯度强度)以及梯度方向

对于梯度方向的范围限定,一般采用无符号的范围,故梯度方向可表示为:

3)基于梯度幅值的方向权重投影
HOG结构
通常使用的HOG结构大致有三种:矩形HOG(简称为R-HOG),圆形HOG和中心环绕HOG。它们的单位都是Block(即块)。Dalal的试验证明矩形HOG和圆形HOG的检测效果基本一致,而环绕形HOG效果相对差一些。
矩形HOG块的划分:
一般一个块(Block)都由若干单元(Cell)组成,一个单元都有如干个像素点组成。
在每个Cell中有独立做梯度方向统计,从而以梯度方向为横轴的的直方图,前面我们已经提到过,梯度方向可取0度到180度或0度~360度,但dalal实验表明,对于人体目标检测0度~180度这种忽略度数正负级的方向范围能够取得更好的结果。然后又将这个梯度分布平均分成 个方向角度(orientation bins),每个方向角度范围都会对应一个直方柱。
根据Dalal等人实验,在人体目标检测中,在无符号方向角度范围并将其平均分成9份(bins)能取得最好的效果,当bin的数目继续增大效果改变不明显,故一般在人体目标检测中使用bin数目为9范围0~180度的度量方式。
Block中各个参数的最终选取:
对于人体对象检测,块的大小为3×3个单元格,单元格的大小为6×6个象素时,检测效果是最好的,错误率约为10%左右。块的大小为2×2个单元格,单元格大小为8×8个象素时,也相差无几。6-8个象素宽的单元格,2-3个单元格宽的块,其错误率都在最低的一个平面上。块的尺寸太大时标准化的作用被削弱了从而导致错误率上升,而如果块的尺寸太小时,有用的信息反而会被过滤掉。
在实际应用中,在Block和Cell划分之后,对于得到各个像区域中,有时候还会为了进行一次高斯平滑,但是对于人体目标检测等问题,该步骤往往可以忽略,实际应用效果不大,估计在主要还是去除区域中噪点,因为梯度对于噪点相当敏感。
对梯度方向的投影权重方式的选取: 
对于梯度方向的加权投影,一般都采用一个权重投影函数,它可以是像素点的梯度幅值,梯度幅值的平方根或梯度幅值的平方,甚至可以使梯度幅值的省略形式,它们都能够一定程度上反应出像素上一定的边缘信息。根据Dalal等人论文的测试结果,采用梯度幅值量级本身得到的检测效果最佳,使用量级的平方根会轻微降低检测结果,而使用二值的边缘权值表示会严重降低效果(约为5%个单位10-4FPPW(False Positives Per Window))。
4)HOG特征向量归一化
对block块内的HOG特征向量进行归一化。对block块内特征向量的归一化主要是为了使特征向量空间对光照,阴影和边缘变化具有鲁棒性。还有归一化是针对每一个block进行的,一般采用的归一化函数有以下四种:

在人体检测系统中进行HOG计算时一般使用L2-norm,Dalal的文章也验证了对于人体检测系统使用L2-norm的时候效果最好。

5)得出HOG最终的特征向量

3.HOG的应用:
主要用在object detection 领域,特别是行人检测,智能交通系统,当然也有文章提到把HOG用在手势识别,人脸识别等方面。

4.HOG与SIFT区别
HOG和SIFT都属于描述子,以及由于在具体操作上有很多相似的步骤,所以致使很多人误认为HOG是SIFT的一种,其实两者在使用目的和具体处理细节上是有很大的区别的。HOG与SIFT的主要区别如下:
① SIFT是基于关键点特征向量的描述。
② HOG是将图像均匀的分成相邻的小块,然后在所有的小块内统计梯度直方图。
③ SIFT需要对图像尺度空间下对像素求极值点,而HOG中不需要。
④ SIFT一般有两大步骤,第一个步骤是对图像提取特征点,而HOG不会对图像提取特征点。
5.HOG的优点:
HOG表示的是边缘(梯度)的结构特征,因此可以描述局部的形状信息;
位置和方向空间的量化一定程度上可以抑制平移和旋转带来的影响;
采取在局部区域归一化直方图,可以部分抵消光照变化带来的影响。
由于一定程度忽略了光照颜色对图像造成的影响,使得图像所需要的表征数据的维度降低了。
而且由于它这种分块分单元的处理方法,也使得图像局部像素点之间的关系可以很好得到的表征。
 
6.HOG的缺点:
描述子生成过程冗长,导致速度慢,实时性差;
很难处理遮挡问题。
由于梯度的性质,该描述子对噪点相当敏感

梯度直方图(HOG,Histogram of Gradient)的更多相关文章

  1. 特征描述子(feature descriptor) —— HOG(方向梯度直方图)

    HOG(Histogram of Oriented Gradients),描述的是图像的局部特征,其命名也暗示了其计算方法,先计算图像中某一区域不同方向上梯度的值,然后累积计算频次,得到直方图,该直方 ...

  2. (转)梯度方向直方图HOG(Histograms of Oriented Gradients )

    HOG(Histograms of Oriented Gradients )梯度方向直方图 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视 ...

  3. 【翻译】HOG, Histogram of Oriented Gradients / 方向梯度直方图 介绍

    本文翻译自 SATYA MALLICK 的 "Histogram of Oriented Gradients" 原文链接: https://www.learnopencv.com/ ...

  4. Histogram of Oriented Gridients(HOG) 方向梯度直方图

    Histogram of Oriented Gridients,缩写为HOG,是目前计算机视觉.模式识别领域很常用的一种描述图像局部纹理的特征.这个特征名字起的也很直白,就是说先计算图片某一区域中不同 ...

  5. 【计算机视觉】Histogram of Oriented Gridients(HOG) 方向梯度直方图

    Histogram of Oriented Gridients(HOG) 方向梯度直方图 Histogram of Oriented Gridients,缩写为HOG,是目前计算机视觉.模式识别领域很 ...

  6. (转)matlab练习程序(HOG方向梯度直方图)

    matlab练习程序(HOG方向梯度直方图)http://www.cnblogs.com/tiandsp/archive/2013/05/24/3097503.html HOG(Histogram o ...

  7. HOG特征(Histogram of Gradient)总结(转载)

    整理一下我个人觉得比较好的HOG博文 博文1:OpenCV HOGDescriptor: 参数与图解 http://blog.csdn.NET/raodotcong/article/details/6 ...

  8. 方向梯度直方图(HOG)和颜色直方图的一些比較

    近期在学习视频检索领域的镜头切割方面的知识,发现经常使用的方法是直方图的方法,所以才专门有时间来学习下.查看到这两种直方图的时候,感觉有点接近,好像又不同,放在这做个比較.大部分还是百科的内容,只是对 ...

  9. HOG特征(Histogram of Gradient)学习总结

    最近在做的项目有用到HOG+SVM这一方面的知识,参考相关论文和网上一些博文在此对HOG特征进行下总结. 参考资料: HOG的经典论文:Dalal N, Triggs B. Histograms of ...

随机推荐

  1. SD卡状态监听(无序广播)

    import android.content.BroadcastReceiver; import android.content.Context; import android.content.Int ...

  2. WPF清爽酷炫的界面Mahapps.metro

    最近WPF项目中要求软件的风格要传统化一点,查阅了下资料发现了Mahapps.metro. 官网 http://mahapps.com/ 下面是官方的DOME,https://github.com/M ...

  3. code review 20190705

    命名规范: 做了什么? 目的是什么? 在什么基础上进行? 注释说明 sql update,where 先行????? 警告: 清空所有警告:所有隐藏比较深入的bug,都是由警告带来的 + 忽略警告 枚 ...

  4. [Bayes] Maximum Likelihood estimates for text classification

    Naïve Bayes Classifier. We will use, specifically, the Bernoulli-Dirichlet model for text classifica ...

  5. 工作流调度器之Azkaban

    Azkaban 1. 工作流调度器概述 1.1. 为什么需要工作流调度系统 一个完整的数据分析系统通常都是由大量任务单元组成:shell脚本程序,java程序,mapreduce程序.hive脚本等 ...

  6. tomcat加载java程序非常慢解决

    解决: 下面两种方式都要添加上,速度会很快,启动妙级的 1)在Tomcat环境中解决 可以通过配置JRE使用非阻塞的Entropy Source. 在catalina.sh中加入这么一行: JAVA_ ...

  7. SQLAlchemy如何筛选值为None的列?那么django呢

    示例 from sqlalchemy import create_engine, MetaData, and_, or_, TIMESTAMP Plugin.query.filter(and_(Plu ...

  8. RabbitMQ简单实现,exchange四种模式,持久化

    RabbitMQ目录 一.简介,简单实现二.Exchange四种类型简单介绍三.消息确认,交换机.队列及消息持久化一.简介及简单实现RabbitMQ是一个消息代理:它接受并转发消息.你可以把它当成一个 ...

  9. java中如何在键盘中输入一串数字然后存入数组中?

    import java.util.Scanner; public class Tset { public static void main(String[] args) { System.out.pr ...

  10. manjar 搭建aria2c下载器

    从添加或删除软件管理程序里安装 aria2. 在一个地方创建一个文本文件,名为 「aria2.conf」 : rpc-user=我是用户名 rpc-passwd=我是密码 enable-rpc=tru ...