2002年印度数学家Manindra Agrawal, Neeraj Kayal,Nitin Saxena 给出了一个是否为素数的判别准则。

定理一:设 $a$ 是于 $p$ 互素的整数,则 $p$ 是素数的充分必要条件是

$$(x-a)^p \equiv (x^p-a)(mod \ p)$$

证:

$\because  (x-a)^p = x^p + \sum_{i=1}^{p-1}C_n^ix^i(-a)^{p-i} + (-a)^p$

如果 $p$ 是素数,则 $p | C_p^i, 0 < i < p$,因此,结论成立

反过来,如果 $p$ 是合数,考虑 $p$ 的素因数 $q$,设 $q^k || p$,易证 $q^k \nmid C_p^q$ 且 $(q^k, a)=1$,因此,$x^q$ 的系数模 $p$ 不为零,这样 $(x-a)^p - (x^p-a)$ 在 $\mathbf{F}_p$ 上不恒为零。证毕

AKS素性检测的更多相关文章

  1. hdu多校第三场 1006 (hdu6608) Fansblog Miller-Rabin素性检测

    题意: 给你一个1e9-1e14的质数P,让你找出这个质数的前一个质数Q,然后计算Q!mod P 题解: 1e14的数据范围pass掉一切素数筛法,考虑Miller-Rabin算法. 米勒拉宾算法是一 ...

  2. 洛谷P1579.验证哥德巴赫猜想(DFS+素性测试)

    题目背景 1742年6月7日哥德巴赫写信给当时的大数学家欧拉,正式提出了以下的猜想:任何一个大于9的奇数都可以表示成3个质数之和.质数是指除了1和本身之外没有其他约数的数,如2和11都是质数,而6不是 ...

  3. 跨越千年的RSA算法

    转载自http://www.matrix67.com/blog/archives/5100 数论,数学中的皇冠,最纯粹的数学.早在古希腊时代,人们就开始痴迷地研究数字,沉浸于这个几乎没有任何实用价值的 ...

  4. 这个发现是否会是RSA算法的BUG、或者可能存在的破解方式?

    笔者从事各种数据加解密算法相关的工作若干年,今天要说的是基于大数分解难题的RSA算法,可能有些啰嗦. 事情的起因是这样的,我最近针对一款芯片进行RSA CRT解密的性能优化.因为期望值是1024bit ...

  5. [转载]RSA算法详解

    原文:http://www.matrix67.com/blog/archives/5100 数论,数学中的皇冠,最纯粹的数学.早在古希腊时代,人们就开始痴迷地研究数字,沉浸于这个几乎没有任何实用价值的 ...

  6. 不可表示的数[x/2] + y + x * y

    前端是时间在庞果网上看到不可表示的数的编程题(如下),我自己也试着解答了一下,写的算法虽然没有没有错,但是跑了一些还只是跑到a8,后来到自己整理一下网上的解答过程,虽然解答写的很清晰,但是有些知识还是 ...

  7. RSA加密算法 C++实现

    上信息安全课,老师布置了几个大作业,其中一个为RSA加密算法的实现,不能用Java写.出于兴趣,决定尝试.完成之后,为了便于查找,于是写下这篇文章,以备后续查看.也供大家一起学习,一起进步. 1.预备 ...

  8. Luogu P5285 [十二省联考2019]骗分过样例

    Preface ZJOI一轮被麻将劝退的老年选手看到这题就两眼放光,省选也有乱搞题? 然后狂肝了3~4天终于打完了,期间还补了一堆姿势 由于我压缩技术比较菜,所以用的都是非打表算法,所以一共写了5K- ...

  9. 清北学堂2019NOIP提高储备营DAY1

    今天是第二次培训的第一天,关于NOIP的基础算法,主要内容如下: $1.枚举 $2.搜索 $3.贪心 $1.枚举: •定义: 枚举又叫做穷举,是一种基础的算法,其思路主要是:从问题中有可能的解集中一一 ...

随机推荐

  1. mosquitto安装遇到问题和解决办法

    问题1 make编译报错,提示xsltproc命令未找到 解决办法: yum  install libxslt 问题2 make编译报错,提示: failed to load external ent ...

  2. css — 定位、背景图、水平垂直居中

    目录 1. 定位 2. 背景图 3. 水平垂直居中 1. 定位 position:static | relative | absolute | fixed; static 静态定位 relative ...

  3. asp.net core-6.Bind读取配置文件到C#实例中

    1,创建asp.net core web应用程序,选择空网站 2,创建一个appsettings.json文件 为什么要叫appsettings.json呢?因为在Iwebhost启动的时候没有添加任 ...

  4. 将迁移学习用于文本分类 《 Universal Language Model Fine-tuning for Text Classification》

    将迁移学习用于文本分类 < Universal Language Model Fine-tuning for Text Classification> 2018-07-27 20:07:4 ...

  5. 音视频入门-02-RGB拼图

    * 音视频入门文章目录 * 图片 & 像素点 & RGB 平时浏览的图片看不出像素点: 图片放大时,可以看出图片是一个个像素点组成的: 每个像素点的颜色可以用 RGB 表示: RGB ...

  6. hdu 6165

    虽然题解上说缩点然后判断入度就可以了,然后比赛的时候瞎暴力过了. #include <iostream> #include <cstring> #include <str ...

  7. IdentityServer4同时使用多个GrantType进行授权和IdentityModel.Client部分源码解析

    首先,介绍一下问题. 由于项目中用户分了三个角色:管理员.代理.会员.其中,代理又分为一级代理.二级代理等,会员也可以相互之间进行推荐. 将用户表分为了两个,管理员和代理都属于后台,在同一张表,会员单 ...

  8. 使用ctypes调用系统C API函数需要注意的问题,函数参数中有指针或结构体的情况下最好不要修改argtypes

    有人向我反应,在代码里同时用我的python模块uiautomation和其它另一个模块后,脚本运行时会报错,但单独使用任意一个模块时都是正常的,没有错误.issue链接 我用一个例子来演示下这个问题 ...

  9. VBA算术运算符

    以下是VBA支持算术运算符. 假设变量A=5,变量B=10,那么 - 运算符 描述 示例 + 两个操作数相加 A + B = 15 - 两个操作数相减 A - B = -5 * 两个操作数相乘 A * ...

  10. Invariant Violation: requireNativeComponent: "RNCWKWebView" was not found in the UIManager.

    react-native  0.60以上版本安装第三方库的时候会autolink  出现这个问题是 我安装 react-native-webview 之后运行 ios出现的,这是因为ios 没有自动安 ...