4827: [Hnoi2017]礼物

Time Limit: 20 Sec  Memory Limit: 512 MB
Submit: 1315  Solved: 915
[Submit][Status][Discuss]

Description

我的室友最近喜欢上了一个可爱的小女生。马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一
个送给她。每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度。但是在她生日的前一天,我的室友突
然发现他好像拿错了一个手环,而且已经没时间去更换它了!他只能使用一种特殊的方法,将其中一个手环中所有
装饰物的亮度增加一个相同的自然数 c(即非负整数)。并且由于这个手环是一个圆,可以以任意的角度旋转它,
但是由于上面 装饰物的方向是固定的,所以手环不能翻转。需要在经过亮度改造和旋转之后,使得两个手环的差
异值最小。在将两个手环旋转且装饰物对齐了之后,从对齐的某个位置开始逆时针方向对装饰物编号 1,2,…,n,
其中 n 为每个手环的装饰物个数,第 1 个手环的 i 号位置装饰物亮度为 xi,第 2 个手 环的 i 号位置装饰物
亮度为 yi,两个手环之间的差异值为(参见输入输出样例和样例解释): \sum_{i=1}^{n}(x_i-y_i)^2麻烦你帮他
计算一下,进行调整(亮度改造和旋转),使得两个手环之间的差异值最小, 这个最小值是多少呢?

Input

输入数据的第一行有两个数n, m,代表每条手环的装饰物的数量为n,每个装饰物的初始 亮度小于等于m。
接下来两行,每行各有n个数,分别代表第一条手环和第二条手环上从某个位置开始逆时 针方向上各装饰物的亮度。
1≤n≤50000, 1≤m≤100, 1≤ai≤m

Output

输出一个数,表示两个手环能产生的最小差异值。
注意在将手环改造之后,装饰物的亮度 可以大于 m。

Sample Input

5 6
1 2 3 4 5
6 3 3 4 5

Sample Output

1
【样例解释】
需要将第一个手环的亮度增加1,第一个手环的亮度变为: 2 3 4 5 6 旋转一下第二个手环。对于该样例,是将第
二个手环的亮度6 3 3 4 5向左循环移动 2017-04-15 第 6 页,共 6 页 一个位置,使得第二手环的最终的亮度为
:3 3 4 5 6。 此时两个手环的亮度差异值为1。

HINT

Source

Solution

  由于是多项式第一题所以抄的yyb的题解(说的像我后面就能自己做一样。。。)

  为了方便,我们从0开始编号,然后答案就是下面这个式子

  \[{\mathop{ \sum }\limits_{{i=0}}^{{n-1}}{\mathop{{{ \left( {\mathop{{x}}\nolimits_{{i}}\mathop{{-y}}\nolimits_{{i+k}}+c} \right) }}}\nolimits^{{2}}}}\]

  其中${c}$的取值范围为${ \left[ {-m,m} \right] }$,因为一旦超过这个范围,$c+{\mathop{{y}}\nolimits_{{i}}}$的绝对值一定大于${\mathop{{x}}\nolimits_{{i}}}$的绝对值,这样把$c$+1或-1一定能使答案更小。

  把答案式子拆开:

  \[{{ \sum {\mathop{{\mathop{{x}}\nolimits_{{i}}}}\nolimits^{{2}}}}+{ \sum {\mathop{{\mathop{{y}}\nolimits_{{i}}}}\nolimits^{{2}}}-{2 \sum {\mathop{{x}}\nolimits_{{i\text{ }}}\mathop{{y}}\nolimits_{{i+k}}}+n\mathop{{c}}\nolimits^{{2}}+}}2c \left( { \sum {\mathop{{x}}\nolimits_{{i}}}-{ \sum {\mathop{{y}}\nolimits_{{i}}}}} \right) }\]

  c可以枚举,所以除了${ \sum {\mathop{{x}}\nolimits_{{i\text{ }}}\mathop{{y}}\nolimits_{{i+k}}}}$都算常数项了,接下来考虑如何最大化${ \sum {\mathop{{x}}\nolimits_{{i\text{ }}}\mathop{{y}}\nolimits_{{i+k}}}}$

  显然不能n^2暴力乘。我们把$x$看成一个多项式,把$y$ reverse一下,也看成一个多项式,然后做卷积,发现卷积后第n-1项的系数恰好就是${ \sum {\mathop{{x}}\nolimits_{{i\text{ }}}\mathop{{y}}\nolimits_{{i}}}}$。

  解法呼之欲出:把$y$(reverse后的)复制一遍接在后面,然后跟$x$做卷积,那么卷积后第n-1+k项的系数就是${ \sum {\mathop{{x}}\nolimits_{{i\text{ }}}\mathop{{y}}\nolimits_{{i+k}}}}$。

  //公式编辑得好累……

Code

#include<bits/stdc++.h>
using namespace std;
const int N=<<;
const double pi=acos(-1.0);
inline int read(){
int x=,w=;char ch=;
while(!isdigit(ch)) w|=ch=='-',ch=getchar();
while(isdigit(ch)) x=(x<<)+(x<<)+(ch^),ch=getchar();
return w?-x:x;
}
struct cp{
double x,y;
cp(double xx=,double yy=):x(xx),y(yy){};
cp operator + (const cp &tmp)const{return cp(x+tmp.x,y+tmp.y);}
cp operator - (const cp &tmp)const{return cp(x-tmp.x,y-tmp.y);}
cp operator * (const cp &tmp)const{return cp(x*tmp.x-y*tmp.y,x*tmp.y+y*tmp.x);}
};
int n,m,ans,ss,sa[N],sb[N],rev[N],res[N];
cp a[N],b[N];
void fft(int n,cp a[],int fg){
for(int i=;i<n;++i) if(i<rev[i]) swap(a[i],a[rev[i]]);
for(int m=,len=m<<;m<n;m<<=,len<<=){
cp I=cp(cos(pi/m),fg*sin(pi/m));
for(int i=;i<n;i+=len){
cp w=cp(,),t;
for(int j=;j<m;++j,w=w*I)
t=a[i+j+m]*w,
a[i+j+m]=a[i+j]-t,
a[i+j]=a[i+j]+t;
}
}
}
void pre(){
for(int i=;i<n;++i) a[i].x=sa[i+],b[i].x=b[i+n].x=sb[n-i];
int lim=,l=;
while(lim<=(n*-)) lim<<=,++l;
for(int i=;i<lim;++i) rev[i]=(rev[i>>]>>)|((i&)<<(l-));
fft(lim,a,),fft(lim,b,);
for(int i=;i<lim;++i) a[i]=a[i]*b[i];
fft(lim,a,-);
for(int i=;i<lim;++i)
res[i]=(int)(a[i].x/lim+0.5);
}
int main(){
n=read(),m=read();
for(int i=;i<=n;++i){
sa[i]=read();
ans+=sa[i]*sa[i];
ss+=sa[i];
}
for(int i=;i<=n;++i){
sb[i]=read();
ans+=sb[i]*sb[i];
ss-=sb[i];
}
pre();
int tmp=;
for(int k=;k<n;++k) tmp=max(tmp,res[n-+k]);
ans-=(tmp<<);tmp=0x3f3f3f3f;
for(int c=-m;c<=m;++c) tmp=min(tmp,n*c*c+*c*ss);
cout<<ans+tmp<<endl;
return ;
}

BZOJ4827

[BZOJ4827][Hnoi2017]礼物(FFT)的更多相关文章

  1. BZOJ4827: [Hnoi2017]礼物(FFT 二次函数)

    题意 题目链接 Sol 越来越菜了..裸的FFT写了1h.. 思路比较简单,直接把 \(\sum (x_i - y_i + c)^2\) 拆开 发现能提出一坨东西,然后与c有关的部分是关于C的二次函数 ...

  2. BZOJ4827:[HNOI2017]礼物(FFT)

    Description 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手环,一个留给自己,一 个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在 ...

  3. [bzoj4827][Hnoi2017]礼物_FFT

    礼物 bzoj-4827 Hnoi-2017 题目大意:给定两个长度为$n$的手环,第一个手环上的$n$个权值为$x_i$,第二个为$y_i$.现在我可以同时将所有的$x_i$同时加上自然数$c$.我 ...

  4. bzoj 4827: [Hnoi2017]礼物 [fft]

    4827: [Hnoi2017]礼物 题意:略 以前做的了 化一化式子就是一个卷积和一些常数项 我记着确定调整值还要求一下导... #include <iostream> #include ...

  5. [Luogu P3723] [AH2017/HNOI2017]礼物 (FFT 卷积)

    题面 传送门:洛咕 Solution 调得我头大,我好菜啊 好吧,我们来颓柿子吧: 我们可以只旋转其中一个手环.对于亮度的问题,因为可以在两个串上增加亮度,我们也可以看做是可以为负数的. 所以说,我们 ...

  6. BZOJ4827 [Hnoi2017]礼物 多项式 FFT

    原文链接http://www.cnblogs.com/zhouzhendong/p/8823962.html 题目传送门 - BZOJ4827 题意 有两个长为$n$的序列$x$和$y$,序列$x,y ...

  7. 【bzoj4827】[Hnoi2017]礼物 FFT

    题目描述 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在她生日的前一天 ...

  8. bzoj4827 [Hnoi2017]礼物

    Description 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在 ...

  9. [AH2017/HNOI2017]礼物(FFT)

    题目描述 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一 个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在她生日的前一 ...

随机推荐

  1. 【其他】BootCDN

    BootCDN 稳定.快速.免费的前端开源项目 CDN 加速服务 是 Bootstrap 中文网支持并维护的前端开源项目免费 CDN 服务,致力于为 Bootstrap.jQuery.Angular. ...

  2. 微信小程序常用事件

    bind bind事件绑定不会阻止冒泡事件向上冒泡,catch事件绑定可以阻止冒泡事件向上冒泡. bindtap  跳转页面 bindchange  .value 改变时触发 change 事件 bi ...

  3. [Scrapy-6] XPath使用的一个坑

    先上代码: import scrapy from scrapy.selector import Selector class QuoteSpider(scrapy.Spider): name = &q ...

  4. ETL 工具和 BI 工具

    ETL是数据仓库中的非常重要的一环,是承前启后的必要的一步.ETL负责将分布的.异构数据源中的数据如关系数据.平面数据文件等抽取到临时中间层后进行清洗.转换.集成,最后加载到数据仓库或数据集市中,成为 ...

  5. odoo 字段组件

    每个字段类型都会使用相应的默认组件在表单中显示.但还有一些替代组件可以使用.对于文本字段,有如下组件: email用于让 email 文本成为可操作的”mail-to”地址 url用于将文本格式化为可 ...

  6. 【wifi移植 1】 ap6210 wifi模块移植

    1. 编译wifi相关功能为模块,生成bcmdhd.ko:由bcmdhd.ko的模块信息可知,该模块依赖于cfg80211.ko和rfkill.ko. 2. 写脚本,开机自动加载wifi模块. 3. ...

  7. 电子工程师需要了解的SMT贴片质量问题汇总(转)

    点胶工艺中常见的缺陷与解决方法 拉丝/拖尾 拉丝/拖尾是点胶中常见的缺陷,产生的原因常见有胶嘴内径太小.点胶压力太高.胶嘴离PCB的间距太大.贴片胶过期或品质不好.贴片胶粘度太好.从冰箱中取出后未能恢 ...

  8. Android基础相关面试问题-binder面试问题详解

    Linux内核的基础知识: 进程隔离/虚拟地址空间:在操作系统中为了保护某个进程互不干扰就设计了一个叫“进程隔离”的技术,防止进程A可以操作进程B的数据.而进程隔离技术用到了虚拟地址空间,进程A的虚拟 ...

  9. Summer training #6

    A:水.看0多还是1多就行 B:模拟二进制运算 ,,卡了好久 不应该 #include <bits/stdc++.h> #include <cstring> #include ...

  10. python学习笔记-(十三)线程、进程、多线程&多进程

    为了方便大家理解下面的知识,可以先看一篇文章:http://www.ruanyifeng.com/blog/2013/04/processes_and_threads.html 线程 1.什么是线程? ...