Jdk1.6 JUC源码解析(13)-LinkedBlockingQueue
- LinkedBlockingQueue是一种基于单向链表实现的有界的(可选的,不指定默认int最大值)阻塞队列。队列中的元素遵循先入先出 (FIFO)的规则。新元素插入到队列的尾部,从队列头部取出元素。(在并发程序中,基于链表实现的队列和基于数组实现的队列相比,往往具有更高的吞吐 量,但性能稍差一些)
- 首先看下LinkedBlockingQueue内部的数据结构:
public class LinkedBlockingQueue<E> extends AbstractQueue<E>
implements BlockingQueue<E>, java.io.Serializable {
private static final long serialVersionUID = -6903933977591709194L; /**
* Linked list node class
*/
static class Node<E> {
/** The item, volatile to ensure barrier separating write and read */
volatile E item;
Node<E> next;
Node(E x) { item = x; }
}
/** The capacity bound, or Integer.MAX_VALUE if none */
private final int capacity;
/** 这里的count为原子量,避免了一些使用count的地方需要加两把锁。 */
private final AtomicInteger count = new AtomicInteger(0);
/** Head of linked list */
private transient Node<E> head;
/** Tail of linked list */
private transient Node<E> last;
/** Lock held by take, poll, etc */
private final ReentrantLock takeLock = new ReentrantLock();
/** Wait queue for waiting takes */
private final Condition notEmpty = takeLock.newCondition();
/** Lock held by put, offer, etc */
private final ReentrantLock putLock = new ReentrantLock();
/** Wait queue for waiting puts */
private final Condition notFull = putLock.newCondition(); /**
* Creates a <tt>LinkedBlockingQueue</tt> with a capacity of
* {@link Integer#MAX_VALUE}.
*/
public LinkedBlockingQueue() {
this(Integer.MAX_VALUE);
}
/**
* Creates a <tt>LinkedBlockingQueue</tt> with the given (fixed) capacity.
*
* @param capacity the capacity of this queue
* @throws IllegalArgumentException if <tt>capacity</tt> is not greater
* than zero
*/
public LinkedBlockingQueue(int capacity) {
if (capacity <= 0) throw new IllegalArgumentException();
this.capacity = capacity;
last = head = new Node<E>(null);
} public LinkedBlockingQueue(Collection<? extends E> c) {
this(Integer.MAX_VALUE);
for (E e : c)
add(e);
}
首先可见,内部为单向链表;其次,内部为两把锁:存锁和取锁,并分别关联一个条件(是一种双锁队列)。
- 还是从put和take入手,先看下put方法:
public void put(E e) throws InterruptedException {
if (e == null) throw new NullPointerException();
// Note: convention in all put/take/etc is to preset
// local var holding count negative to indicate failure unless set.
int c = -1;
final ReentrantLock putLock = this.putLock;
final AtomicInteger count = this.count;
putLock.lockInterruptibly();
try {
/*
* Note that count is used in wait guard even though it is
* not protected by lock. This works because count can
* only decrease at this point (all other puts are shut
* out by lock), and we (or some other waiting put) are
* signalled if it ever changes from
* capacity. Similarly for all other uses of count in
* other wait guards.
*/
try {
while (count.get() == capacity)
notFull.await();
} catch (InterruptedException ie) {
notFull.signal(); // propagate to a non-interrupted thread
throw ie;
}
insert(e);
c = count.getAndIncrement();
if (c + 1 < capacity)
/*
* 注意这里的处理:和单锁队列不同,count为原子量,不需要锁保护。
* put过程中可能有其他线程执行多次get,所以这里需要判断一下当前
* 如果还有剩余容量,那么继续唤醒notFull条件上等待的线程。
*/
notFull.signal();
} finally {
putLock.unlock();
}
if (c == 0) //如果count又0变为1,说明在队列是空的情况下插入了1个元素,唤醒notNull条件上等待的线程。
signalNotEmpty();
}
/**
* Creates a node and links it at end of queue.
* @param x the item
*/
private void insert(E x) {
last = last.next = new Node<E>(x);
}
/**
* Signals a waiting take. Called only from put/offer (which do not
* otherwise ordinarily lock takeLock.)
*/
private void signalNotEmpty() {
final ReentrantLock takeLock = this.takeLock;
takeLock.lock();
try {
notEmpty.signal();
} finally {
takeLock.unlock();
}
}
代码很容易看懂,再看下take方法实现:
public E take() throws InterruptedException {
E x;
int c = -1;
final AtomicInteger count = this.count;
final ReentrantLock takeLock = this.takeLock;
takeLock.lockInterruptibly();
try {
try {
while (count.get() == 0)
notEmpty.await();
} catch (InterruptedException ie) {
notEmpty.signal(); // propagate to a non-interrupted thread
throw ie;
}
x = extract();
c = count.getAndDecrement();
if (c > 1)
notEmpty.signal();
} finally {
takeLock.unlock();
}
if (c == capacity)
signalNotFull();
return x;
}
/**
* Removes a node from head of queue,
* @return the node
*/
private E extract() {
Node<E> first = head.next;
head = first;
E x = first.item;
first.item = null;
return x;
}
/**
* Signals a waiting put. Called only from take/poll.
*/
private void signalNotFull() {
final ReentrantLock putLock = this.putLock;
putLock.lock();
try {
notFull.signal();
} finally {
putLock.unlock();
}
}
和put对等的逻辑,也很容易看懂。
- 上面看到,主要方法里并没有同时用两把锁,但有些方法里会同时使用两把锁,比如remove方法等:
public boolean remove(Object o) {
if (o == null) return false;
boolean removed = false;
fullyLock();
try {
Node<E> trail = head;
Node<E> p = head.next;
while (p != null) {
if (o.equals(p.item)) {
removed = true;
break;
}
trail = p;
p = p.next;
}
if (removed) {
p.item = null;
trail.next = p.next;
if (last == p)
last = trail;
if (count.getAndDecrement() == capacity)
notFull.signalAll();
}
} finally {
fullyUnlock();
}
return removed;
}
/**
* Lock to prevent both puts and takes.
*/
private void fullyLock() {
putLock.lock();
takeLock.lock();
}
/**
* Unlock to allow both puts and takes.
*/
private void fullyUnlock() {
takeLock.unlock();
putLock.unlock();
}
Jdk1.6 JUC源码解析(13)-LinkedBlockingQueue的更多相关文章
- Jdk1.6 JUC源码解析(12)-ArrayBlockingQueue
功能简介: ArrayBlockingQueue是一种基于数组实现的有界的阻塞队列.队列中的元素遵循先入先出(FIFO)的规则.新元素插入到队列的尾部,从队列头部取出元素. 和普通队列有所不同,该队列 ...
- 【JUC源码解析】LinkedBlockingQueue
简介 一个基于链表的阻塞队列,FIFO的顺序,head指向的元素等待时间最长,tail指向的元素等待时间最短,新元素从队列尾部添加,检索元素从队列头部开始,队列的容量,默认是Integer#MAX_V ...
- Jdk1.6 JUC源码解析(6)-locks-AbstractQueuedSynchronizer
功能简介: AbstractQueuedSynchronizer(以下简称AQS)是Java并发包提供的一个同步基础机制,是并发包中实现Lock和其他同步机制(如:Semaphore.CountDow ...
- Jdk1.6 JUC源码解析(7)-locks-ReentrantLock
功能简介: Java代码层面提供的锁机制,可做为Synchronized(jvm内置)的替代物,和Synchronized一样都是可重入的. 与Synchronized相比较而言,ReentrantL ...
- Jdk1.6 JUC源码解析(1)-atomic-AtomicXXX
转自:http://brokendreams.iteye.com/blog/2250109 功能简介: 原子量和普通变量相比,主要体现在读写的线程安全上.对原子量的是原子的(比如多线程下的共享变量i+ ...
- 【JUC源码解析】ScheduledThreadPoolExecutor
简介 它是一个线程池执行器(ThreadPoolExecutor),在给定的延迟(delay)后执行.在多线程或者对灵活性有要求的环境下,要优于java.util.Timer. 提交的任务在执行之前支 ...
- 【JUC源码解析】ForkJoinPool
简介 ForkJoin 框架,另一种风格的线程池(相比于ThreadPoolExecutor),采用分治算法,工作密取策略,极大地提高了并行性.对于那种大任务分割小任务的场景(分治)尤其有用. 框架图 ...
- 【JUC源码解析】Exchanger
简介 Exchanger,并发工具类,用于线程间的数据交换. 使用 两个线程,两个缓冲区,一个线程往一个缓冲区里面填数据,另一个线程从另一个缓冲区里面取数据.当填数据的线程将缓冲区填满时,或者取数据的 ...
- 【JUC源码解析】SynchronousQueue
简介 SynchronousQueue是一种特殊的阻塞队列,该队列没有容量. [存数据线程]到达队列后,若发现没有[取数据线程]在此等待,则[存数据线程]便入队等待,直到有[取数据线程]来取数据,并释 ...
随机推荐
- 浅谈对java中传参问题的理解
之前用的c/c++比较多,在c/c++中对于传参类型,无外乎就是传值.传引用.传指针这几种.但在java中,由于没有指针类型,其传参的方式也发生了相应的变化.在网上找了找,按我之前的理解,java中传 ...
- git工具使用方法及常用命令
git下载地址:https://git-for-windows.github.io/git环境变量配置:增加:GIT_HOME = C:\Git (文件夹为git软件的安装文件夹)Path添加: %G ...
- [SinGuLaRiTy] COCI 2011~2012 #2
[SinGuLaRiTy-1008] Copyright (c) SinGuLaRiTy 2017. All Rights Reserved. 测试题目 对于所有的题目:Time Limit:1s ...
- UILabel的讲解
首先,我先自定义几个名词,方便接下来的讲解工作.如下图所示: 接下来,通过五个方面来讲解我们能对UILabel做出哪些改变或者称之为设置: 1.文字 1.1普通文字:内容text.字体大小font.字 ...
- 使用SQL存储过程有什么好处 用视图有什么好处
随便胡乱说几点,大家补充一下.1.预编译,已优化,效率较高.避免了SQL语句在网络中传输然后再解释的低效率.2.如果公司有专门的DBA,写存储过程可以他来做,程序员只要按他提供的接口调用就好了.这样分 ...
- 《c#入门经典第五版》简介及pdf电子书网盘下载地址(收藏)
<C#入门经典(第5版)>全面讲解C# 2010和.net架构编程知识,为您编写卓越C# 2010程序奠定坚实基础.C#入门经典系列是屡获殊荣的C#名著和超级畅销书.最新版的<C#入 ...
- 给我的cnblogs主页做一个响应式布局模板
在cnblogs,一直都是使用官方自带的那些模板,而且感觉也一直很良好!不过最近用手机搜索一些相关的技术资料,很多都来自cnblogs,有些博主的页面在和机端显得很好,有些则展示得不那么友好了……忽然 ...
- 使用RandomAccessFile类对文件进行读写
1. RandomAccessFile类简介 前面一篇随笔<File类遍历目录及文件>中有说到,File类只能用于表示文件或目录的名称.大小等信息,而不能用于文件内容的访问.而当需要访 ...
- 初学strurs基础
Struts2基础学习总结 Struts 2是在WebWork2基础发展而来的. 注意:struts 2和struts 1在代码风格上几乎不一样. Struts 2 相比Struts 1的优点: 1. ...
- java写文件读写操作(IO流,字节流)
package copyfile; import java.io.*; public class copy { public static void main(String[] args) throw ...