[51nod1254]最大子段和 V2
N个整数组成的序列a[1],a[2],a[3],…,a[n],你可以对数组中的一对元素进行交换,并且交换后求a[1]至a[n]的最大子段和,所能得到的结果是所有交换中最大的。当所给的整数均为负数时和为0。
例如:{-2,11,-4,13,-5,-2, 4}将 -4 和 4 交换,{-2,11,4,13,-5,-2, -4},最大子段和为11 + 4 + 13 = 28。
Input
第1行:整数序列的长度N(2 <= N <= 50000)
第2 - N + 1行:N个整数(-10^9 <= A[i] <= 10^9)
Output
输出交换一次后的最大子段和。
先考虑与左边的数字交换的情况。
枚举交换位置x,把交换后的段拆成x左边和x右边两部分算。
需要事先计算出前缀和、后缀和、后缀和的后缀最小值、(前缀和 - 前缀最大值)的前缀最小值。
和右边的数交换同理。。
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
#include<cmath>
#define ll long long
#define ui unsigned int
#define ull unsigned long long
using namespace std;
const int maxn=,modd=;
ll mn1[maxn],mn2[maxn],_mn1[maxn],_mn2[maxn],pr[maxn],af[maxn],ans;
int prmx[maxn],afmx[maxn],a[maxn];
int i,j,k,n,m; int ra,fh;char rx;
inline int read(){
rx=getchar(),ra=,fh=;
while((rx<''||rx>'')&&rx!='-')rx=getchar();
if(rx=='-')fh=-,rx=getchar();
while(rx>=''&&rx<='')ra*=,ra+=rx-,rx=getchar();return ra*fh;
} int main(){
n=read();prmx[]=afmx[n+]=-1e9;
for(i=;i<=n;i++)a[i]=read(),pr[i]=pr[i-]+a[i],prmx[i]=max(prmx[i-],a[i]);
for(i=n;i;i--)af[i]=af[i+]+a[i],afmx[i]=max(afmx[i+],a[i]); // mn1[1]=0,mn2[1]=pr[1];
for(i=;i<=n;i++)
mn1[i]=min(mn1[i-],pr[i]-prmx[i]),
mn2[i]=min(mn2[i-],pr[i]);
// _mn1[n]=0,_mn2[n]=af[n];
for(i=n;i;i--)
_mn1[i]=min(_mn1[i+],af[i]-afmx[i]),
_mn2[i]=min(_mn2[i+],af[i]);
for(i=;i<=n;i++)
//i=15,//printf(" %lld-%lld %lld-%lld\n",af[i+1],_mn2[i+1],pr[i-1],mn1[i-1]),
ans=max(ans,(af[i+]-_mn2[i+])+(pr[i-]-mn1[i-])),
ans=max(ans,(pr[i-]-mn2[i-])+(af[i+]-_mn1[i+])),
ans=max(ans,pr[i]-mn2[i]);
printf("%lld\n",ans);
}
[51nod1254]最大子段和 V2的更多相关文章
- 51nod1254 最大子段和 V2 DP
---题面--- 题解: 表示今天做题一点都不顺.... 这题也是看了题解思路然后自己想转移的. 看的题解其实不是这道题,但是是这道题的加强版,因为那道题允许交换k对数. 因为我们选出的是连续的一段, ...
- 51nod 1053 最大M子段和 V2
N个整数组成的序列a[1],a[2],a[3],…,a[n],将这N个数划分为互不相交的M个子段,并且这M个子段的和是最大的.如果M >= N个数中正数的个数,那么输出所有正数的和. 例如:-2 ...
- 最大M子段和 V2
51nod1053 这题还是我们熟悉的M子段和,只不过N,M<=50000. 这题似乎是一个堆+链表的题目啊 开始考虑把所有正数负数锁在一起. 比如: 1 2 3 -1 –2 -3 666 缩成 ...
- 51nod 1254 最大子段和 V2 ——单调栈
N个整数组成的序列a[1],a[2],a[3],…,a[n],你可以对数组中的一对元素进行交换,并且交换后求a[1]至a[n]的最大子段和,所能得到的结果是所有交换中最大的.当所给的整数均为负数时和为 ...
- 51nod 1254 最大子段和 V2
N个整数组成的序列a[1],a[2],a[3],…,a[n],你可以对数组中的一对元素进行交换,并且交换后求a[1]至a[n]的最大子段和,所能得到的结果是所有交换中最大的.当所给的整数均为负数时和为 ...
- 51nod1524 最大子段和V2
题干 N个整数组成的序列a[1],a[2],a[3],-,a[n],你可以对数组中的一对元素进行交换,并且交换后求a[1]至a[n]的最大子段和,所能得到的结果是所有交换中最大的.当所给的整数均为负数 ...
- 51Nod1053 最大M子段和V2 二分+DP
传送门 直接DP的话最多也只能做到\(O(nm)\),对于\(5\times 10^4\)的数据范围实在无能为力 夹克老爷提供的做法是贪心,思想大概是在调整的同时,合理构造每个选择对应的新状态,使得新 ...
- 51nod1053 最大M子段和 V2
$n \leq 50000$的序列,问选不超过$m \leq 50000$个区间使得和最大. 如果正数区间总数比$m$小那肯定全选.否则有两种方式减少区间数量:丢掉一个正区间:补一个负区间连接两个正区 ...
- 51Nod 最大M子段和系列 V1 V2 V3
前言 \(HE\)沾\(BJ\)的光成功滚回家里了...这堆最大子段和的题抠了半天,然而各位\(dalao\)们都已经去做概率了...先%为敬. 引流之主:老姚的博客 最大M子段和 V1 思路 最简单 ...
随机推荐
- Python 爬虫实战(一):使用 requests 和 BeautifulSoup
Python 基础 我之前写的<Python 3 极简教程.pdf>,适合有点编程基础的快速入门,通过该系列文章学习,能够独立完成接口的编写,写写小东西没问题. requests requ ...
- JavaScript:AOP实现
AOP的概念,使用过Spring的人应该都不陌生了.Dojo中,也是支持AOP的.对于JavaScript的其他框架.库不知道有没有AOP的支持.相信即便没有支持,也不会太远了.下面就介绍一下使用Ja ...
- iOS tableViewCell 在自定义高度方法中遇到的问题,cell高度为0,cell显示不出来,cell直接显示第几个而不是...cell显示个数不对
遇到以上问题可以看看你的cell高度中是否有,自定的高度,有了继续看,没有了继续百度... 在文字排版中,少不了自适应文字高度,行间距什么的:显然cell的高度时不固定的,如果复用自定义的cell的话 ...
- Mybatis入门(一)之操作数据库
Whats Mybatis 持久层框架, 替代MVC层中DAO,因为DAO 层的需求就是 :能与数据库交互的对象. 能执行SQL语句. 不同于JDBC的connection,MyBatis 中有个Sq ...
- C++ 头文件系列(iostream)
1. 简介 这个头文件非常特殊,它只声明了8个常用流对象. 2. 8个对象 2.1 窄字符对象(char) extern istream cin extern ostream cout extern ...
- [置顶]
xamarin android使用zxing扫描二维码
好久没写了,这片文章篇幅不长,概述一下在xamarin android中用 ZXing.Net.Mobile库扫描二维码读取url的示例.扫码支付,扫码登录,App上各种各样的扫码,好像没个扫码的就有 ...
- ArcGIS API for JavaScript 4.2学习笔记[26] 缓冲区分析【基于geometryEngine工具类】
要说GIS空间分析最经典的例子,就是缓冲区分析了. 本例使用geometryEngine来绘制缓冲区环.因为官方给的例子有3D和2D场景,所以就会显得比较复杂. 当鼠标在视图上点击时,就会生成一个缓冲 ...
- linux防火墙之 ufw
Usage: ufw COMMAND Commands: enable enables the firewall 开启ufw防火墙 disable disables the firewall 禁用防火 ...
- centos 7 部署 汉化版 gitlab
=============================================== 2017/11/12_第6次修改 ccb_warlock 更 ...
- Linux 配置163yum源epel 源
今天一个小伙伴询问博主,想换个163源(阿里源.亚马逊应该都是一样,博主没有一一验证)怎么换!博主当然兴致勃勃的准备好了指点小伙伴...但是,你没猜错,打脸了.而且最后还是和小伙伴一起配置好的,所以就 ...