SDRAM操作(FPGA实现)
对SDRAM基本概念的介绍以及芯片手册说明,请参考上一篇文章SDRAM操作说明。
1. 说明
如图所示为状态机的简化图示,过程大概可以描述为:SDRAM(IS42S16320D)上电初始化完成后,进入“空闲”状态,此时一直监控外部控制模块给予的控制信号。初始化完成后,外部定时器开始定时,定时周期为SDRAM刷新周期(7.7us),一旦计数到刷新周期后,向状态机发送auto_ref_req(自动刷新请求),此时状态机进入“刷新”状态,这样就确保在无任何操作时,SDRAM能正常完成刷新。刷新完成后回到“空闲”状态。
当处于空闲状态时,接收到写命令(wr_en),进入“写”状态(有效接收读写命令的时刻有特殊要求,后面再详细说明),在full_page下连续写600个数据(100MHz,恰好耗时6us多一点,这样方便不用考虑定时刷新),写完之后,发送wr_done命令,进入“刷新”状态,相对于每次连续写完成后,提前刷新一次。此时,定时刷新的计数器清零,重新开始计数。
读多过程跟写过程类似,读完600个数据之后,手动完成刷新。

现在就来说一说,“空闲”状态接收读写命令的特殊要求。理论上充电周期为7.8125us,为保证600次读写在充电周期内完成,并且前后预留一些其他命令的时间,所以推荐在0~1us这个时间内接受读写命令,这样读写的时候专注读写就可以了。当然这是我的设计方式,如有更好的设计方式,那更好,欢迎分享。

2. 代码实现
状态机的代码如下所示,清晰的描述了各状态之间的跳变及其跳变条件。其中信号ctrl_valid即为上图中命令有效期的时间区间。在各状态描述的时序逻辑模块中,只是产生了读、写或刷新执行模块的使能信号,即在“写”状态的时候,使能写模块,完成相信的写操作。
always @ (posedge clk or negedge rst_n)
begin
if(rst_n == 1'b0)
begin
current_status <= IDLE;
end
else if(init_ing == 1'b0)
begin
current_status <= next_status;
end
else
begin
current_status <= IDLE;
end
end
always @ (rst_n or current_status or sdram_wrreq or sdram_rdreq or ref_req_auto or wr_done or rd_done or ref_done or ctrl_valid)
begin
next_status = 5'dx;
case(current_status)
IDLE:
begin
if(ref_req_auto == 1'b1) //收到自动刷新请求
begin
next_status = AUTO_REF;
end
else if(ctrl_valid == 1'b1 && sdram_wrreq == 1'b1)//在读写控制有效区内收到写请求
begin
next_status = WRITE;
end
else if(ctrl_valid == 1'b1 && sdram_rdreq == 1'b1) //在读写控制有效区内收到读请求
begin
next_status = READ;
end
else
begin
next_status = IDLE;
end
end
WRITE:
begin
if(wr_done == 1'b1)
begin
next_status = AUTO_REF;
end
else
begin
next_status = WRITE;
end
end
READ:
begin
if(rd_done == 1'b1)
begin
next_status = AUTO_REF;
end
else
begin
next_status = READ;
end
end
AUTO_REF:
begin
if(ref_done == 1'b1)
begin
next_status = IDLE;
end
else
begin
next_status = AUTO_REF;
end
end
default:
begin
next_status = IDLE;
end
endcase
end
//各个状态下的使能信号,以控制相应的模块执行相应的操作
always @ (posedge clk or negedge rst_n)
begin
if(rst_n == 1'b0)
begin
wr_start <= 1'b0;
rd_start <= 1'b0;
ref_start <= 1'b0;
end
else
begin
case(next_status)
IDLE:
begin
wr_start <= 1'b0;
rd_start <= 1'b0;
ref_start <= 1'b0;
end
WRITE:
begin
wr_start <= 1'b1;
rd_start <= 1'b0;
ref_start <= 1'b0;
end
READ:
begin
wr_start <= 1'b0;
rd_start <= 1'b1;
ref_start <= 1'b0;
end
AUTO_REF:
begin
wr_start <= 1'b0;
rd_start <= 1'b0;
ref_start <= 1'b1;
end
default:
begin
wr_start <= 1'b0;
rd_start <= 1'b0;
ref_start <= 1'b0;
end
endcase
end
end
以下给出写操作模块的部分代码,读操作和刷新同理。中间有些信号是我工程需要,参考一下思路即可。
always @(posedge clk or negedge rst_n)
begin
if(rst_n == 1'b0)
begin
cke_wr <= 1'b0;
cmd_wr <= NOP;
dqm_wr <= DQM_DIS;
bank_addr_wr <= BANK0;
addr_wr <= DONT_CARE_ADDR;
wr_done <= 1'b0;
wr_first_flag_r <= 1'b0;
status_wr <= 4'd0;
end
else if(wr_start == 1'b1)
begin
case(status_wr)
4'd0:
begin
cke_wr <= 1'b1;
cmd_wr <= NOP;
dqm_wr <= DQM_EN;
bank_addr_wr <= BANK0;
addr_wr <= DONT_CARE_ADDR;
wr_done <= 1'b0;
wr_first_flag_r <= 1'b0;
status_wr <= status_wr + 4'd1;
end
4'd1:
begin
cke_wr <= 1'b1;
cmd_wr <= ACT;
dqm_wr <= DQM_EN;
bank_addr_wr <= BANK0;
addr_wr <= row_addr; //行地址
wr_done <= 1'b0;
wr_first_flag_r <= 1'b0;
status_wr <= status_wr + 4'd1;
end
4'd2: //4'd2和4'd3是为了延时T_RCD,即两个时钟
begin
cke_wr <= 1'b1;
cmd_wr <= NOP;
dqm_wr <= DQM_EN;
bank_addr_wr <= BANK0;
addr_wr <= DONT_CARE_ADDR;
wr_done <= 1'b0;
wr_first_flag_r <= 1'b0;
status_wr <= status_wr + 4'd1;
end
4'd3:
begin
cke_wr <= 1'b1;
cmd_wr <= NOP;
dqm_wr <= DQM_EN;
bank_addr_wr <= BANK0;
addr_wr <= DONT_CARE_ADDR;
wr_done <= 1'b0;
wr_first_flag_r <= 1'b0;
status_wr <= status_wr + 4'd1;
end
4'd4:
begin
cke_wr <= 1'b1;
cmd_wr <= NOP;
dqm_wr <= DQM_EN;
bank_addr_wr <= BANK0;
addr_wr <= DONT_CARE_ADDR;
wr_done <= 1'b0;
wr_first_flag_r <= 1'b1; //用于写入第一个数据的时序标记
status_wr <= status_wr + 4'd1;
end
4'd5:
begin
cke_wr <= 1'b1;
cmd_wr <= WR;
dqm_wr <= DQM_EN;
bank_addr_wr <= BANK0;
addr_wr <= column_addr; //{A12A11,A10,column_address}
wr_done <= 1'b0;
wr_first_flag_r <= 1'b0;
status_wr <= status_wr + 4'd1;
end
4'd6:
begin
if(sdram_wr_done == 1'b1) //用于增加NOP持续周期
begin
cke_wr <= 1'b1;
cmd_wr <= NOP;
dqm_wr <= DQM_DIS;
bank_addr_wr <= BANK0;
addr_wr <= DONT_CARE_ADDR;
wr_done <= 1'b1;
wr_first_flag_r <= 1'b0;
status_wr <= status_wr + 4'd1;
end
else
begin
cke_wr <= 1'b1;
cmd_wr <= NOP;
dqm_wr <= DQM_EN;
bank_addr_wr <= BANK0;
addr_wr <= DONT_CARE_ADDR;
wr_done <= 1'b0;
wr_first_flag_r <= 1'b0;
status_wr <= status_wr;
end
end
4'd7:
begin
cke_wr <= 1'b1;
cmd_wr <= NOP;
dqm_wr <= DQM_DIS;
bank_addr_wr <= BANK0;
addr_wr <= DONT_CARE_ADDR;
wr_done <= 1'b0;
wr_first_flag_r <= 1'b0;
status_wr <= 4'd0;
end
default:
begin
cke_wr <= 1'b1;
cmd_wr <= NOP;
dqm_wr <= DQM_EN;
bank_addr_wr <= BANK0;
addr_wr <= DONT_CARE_ADDR;
wr_done <= 1'b0;
wr_first_flag_r <= 1'b0;
status_wr <= 4'd0;
end
endcase
end
else
begin
cke_wr <= 1'b1;
cmd_wr <= NOP;
dqm_wr <= DQM_EN;
bank_addr_wr <= BANK0;
addr_wr <= DONT_CARE_ADDR;
wr_done <= 1'b0;
wr_first_flag_r <= 1'b0;
status_wr <= 4'd0;
end
end
参考文献
SDRAM驱动篇之简易SDRAM控制器的verilog代码实现
SDRAM操作(FPGA实现)的更多相关文章
- 用ModelSim仿真SDRAM操作
之前写了两篇关于Modelsim仿真的blog,其中模块管脚的命名可能让人觉得有些奇怪,其实不然,之前的两篇内容都是为了仿真SDRAM操作做铺垫的. 由于SDRAM的仿真过程相对比较复杂,也比较繁琐. ...
- [FPGA] 1、开发板使用和引脚连接
目录 1.注意事项 2.设备简介 3.引脚分配 注意事项: ① 插拔下载线时必须断电! ② Quartus II 软件和 NIOS 软件的版本必须一致,并安装在同一个目录下面,安装目录不要有中文和空格 ...
- 通过HPS控制FPGA端的GPIO
该笔记主要记录HPS端如何通过AXI Bridge控制FPGA端口的GPIO,主要是如何操作FPGA侧的Led 1.AXI Bridge AXIB主要包括H2FB.F2HB.LWH2F ...
- HPS端如何通过AXI Bridge控制FPGA端口的GPIO
该笔记主要记录HPS端如何通过AXI Bridge控制FPGA端口的GPIO,主要是如何操作FPGA侧的Led 1.AXI Bridge AXIB主要包括H2FB.F2HB.LWH2F ...
- 转载 基于NicheStack协议栈的TCP/IP实现
一.摘要 Altera软件NIOS II高版本(7.2版本以上,本例程中使用的是9.0版本)中实现TCP/IP所用的协议栈为NicheStack,常用的例程有2个,web_server和simple_ ...
- 【DSP开发】6455EMIF
外部设备连接接口包括外部存储器连接接口(EMIF).主机接口(HPI)等.外部存储器接口主要用来同并行存储器连接,这些存储器包括SDRAM.SBSRAM.Flash.SRAM存储器等,外部存储器接口 ...
- [转]DDR3基础知识介绍
本文转自:(4条消息) xilinx ddr3 MIG ip核使用详解_admiraion123的博客-CSDN博客 1,DDR3基本内容介绍1.1,DDR3简介DDR3全称double-data-r ...
- 【图像处理】【SEED-VPM】6.文件目录结构
———————————————————————————————————————————————————————————————————————— seed-vpm6467 \ Hardware Tes ...
- cavium octeon 处理器启动总线Bootbus 简介
cavium octeon 处理器启动总线Bootbus 简介: 韩大卫@吉林师范大学 Boot-bus(启动总线)是cavium octeon处理器的一种用于启动系统的硬件. CPU通过boot b ...
随机推荐
- JavaScript实现常见算法面试题
算法题目部分参照了<进军硅谷>这本书. github:https://github.com/qcer/Algo-Practice (如果你觉得有帮助,记得给个star,THS) 一.排序 ...
- TensorFlow问题:The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
1. 问题描述 The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available o ...
- [原创]InnoDB体系结构
参阅:<innodb存储引擎内幕> innodb整体的体系结构如下图所示: 整体结构分两大部分:内存和进程其中内存包括:buffer_pool\redo log buffer\addit ...
- python 基础一
Python安装 Python --:安装时可以勾选 PATH环境变量,安装后无需再设置环境变量; Python 交互下 exit().quit()----可以退出交互环境; Pyhton 安装库与卸 ...
- spring-boot学习资料
spring-boot: http://www.ityouknow.com/spring-boot 这里的内容都可以学习下: https://zhuanlan.zhihu.com/dreawer?to ...
- 安利一波那个叫做 hutool 的通用工具类库
摘自3.1.1版本作者发布原话,当时看到有点说不上的情绪,为作者的坚持.热爱点个赞. 已经想不起来是怎样结识 Hutool 的,但 Hutool 伴随几个项目的推进,获得了同事一致好评. 没经过实践和 ...
- SpringMVC 集成redis
一.下载导入jar 二.配置redis 1.创建redis.properties # Redis settings #redis.host=192.168.20.101 #redis.port= #r ...
- LeetCode 442. Find All Duplicates in an Array (在数组中找到所有的重复项)
Given an array of integers, 1 ≤ a[i] ≤ n (n = size of array), some elements appear twice and others ...
- hadoop2.6环境中部署hive1.2.2的错误
1.hive配置遇到的问题( Relative path in absolute URI: ${system:java.io.tmpdir%7D/$%7Bsystem:user.name%7D) 解决 ...
- Java语言写出水仙花数,
package com.llh.demo;/** * 水仙花数 * @author llh * */public class Demo14 { public static void main(S ...