Harris、Shi-Tomasi和亚像素角点都是角点,隶属于特征点这个大类(特征点可以分为边缘、角点、斑点).

一、Harris角点检测是一种直接基于灰度图像的角点提取算法,稳定性较高,但是也可能出现有用信息丢失的情况。
函数:cornerHarris()
void cv::cornerHarris ( InputArray  src,  //需要为8位单通道
    OutputArray  dst,  //结果
    int  blockSize, //领域大小
    int  ksize, //Sobel孔径大小
    double  k, //Harris参数
    int  borderType = BORDER_DEFAULT 
  )    

Harris corner detector.

The function runs the Harris corner detector on the image. Similarly to cornerMinEigenVal and cornerEigenValsAndVecs , for each pixel (x, y) it calculates a 2\times2 gradient covariance matrix M^{(x,y)} over a \texttt{blockSize} \times \texttt{blockSize} neighborhood. Then, it computes the following characteristic:

(特征点计算方法)

 

Corners in the image can be found as the local maxima of this response map.

Parameters
src Input single-channel 8-bit or floating-point image.
dst Image to store the Harris detector responses. It has the type CV_32FC1 and the same size as src .
blockSize Neighborhood size (see the details on cornerEigenValsAndVecs ).
ksize Aperture parameter for the Sobel operator.
k Harris detector free parameter. See the formula below.
borderType Pixel extrapolation method. See cv::BorderTypes.
调用:
 
    Mat srcGray ,,.);
    .,,THRESH_BINARY);
    imshow();
lena的结果:
二、Shi-Tomasi角点
一般认为是Harris的改进,因为当时提出的论文叫做《Good Features to Track》,所以这种角点再OpenCV中叫做goodFeatures
函数:goodFeaturesToTrack()
void cv::goodFeaturesToTrack ( InputArray  image,//输入图像
    OutputArray  corners,//输出向量
    int  maxCorners,//角点最大数量
    double  qualityLevel,//角点检测可接受的最小特征值
    double  minDistance,//角点之间的最小距离
    InputArray  mask = noArray(),//感兴趣区域
    int  blockSize = 3,//领域范围
    bool  useHarrisDetector = false,//true为harris;false为Shi-Tomasi
    double  k = 0.04 //权重系数
  )    

Determines strong corners on an image.

The function finds the most prominent corners in the image or in the specified image region, as described in [154]

  • Function calculates the corner quality measure at every source image pixel using the cornerMinEigenVal or cornerHarris .
  • Function performs a non-maximum suppression (the local maximums in 3 x 3 neighborhood are retained).
  • The corners with the minimal eigenvalue less than qualityLevel⋅maxx,yqualityMeasureMap(x,y) are rejected.
  • The remaining corners are sorted by the quality measure in the descending order.
  • Function throws away each corner for which there is a stronger corner at a distance less than maxDistance.

The function can be used to initialize a point-based tracker of an object.

Note
If the function is called with different values A and B of the parameter qualityLevel , and A > B, the vector of returned corners with qualityLevel=A will be the prefix of the output vector with qualityLevel=B .
Parameters
image Input 8-bit or floating-point 32-bit, single-channel image.
corners Output vector of detected corners.
maxCorners Maximum number of corners to return. If there are more corners than are found, the strongest of them is returned. maxCorners <= 0 implies that no limit on the maximum is set and all detected corners are returned.
qualityLevel Parameter characterizing the minimal accepted quality of image corners. The parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue (see cornerMinEigenVal ) or the Harris function response (see cornerHarris ). The corners with the quality measure less than the product are rejected. For example, if the best corner has the quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure less than 15 are rejected.
minDistance Minimum possible Euclidean distance between the returned corners.
mask Optional region of interest. If the image is not empty (it needs to have the type CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected.
blockSize Size of an average block for computing a derivative covariation matrix over each pixel neighborhood. See cornerEigenValsAndVecs .
useHarrisDetector Parameter indicating whether to use a Harris detector (see cornerHarris) or cornerMinEigenVal.
k Free parameter of the Harris detector.
调用:
Mat srcGray = imread("e:/template/lena.jpg",IMREAD_GRAYSCALE);    
,.,,Mat(),,.);
    ;i,Scalar());
    }
     
    imshow();
结果:
可以看到,眼部、帽子上面的尖端这些的却是"GoodFeatures"的地方都被标注了出来
三、如果需要亚像素的角点,我们必须更进一步。
函数:cornerSubPix()
void cv::cornerSubPix ( InputArray  image,
    InputOutputArray  corners,
    Size  winSize,
    Size  zeroZone,
    TermCriteria  criteria 
  )    
调用:需要注意现计算goodfeatures再算亚像素
Mat srcGray .,                              ,                                 ,                                 .                               , ),      ,),                   ,                              .                             ;i,Scalar());
        cout);
结果:
可以看到其计算处理小数点后面的值。
四、小结
角点虽然现在用的比较少了,但是作为基本的知识有必要了解;下一步的更为复杂的特征点模型都是基于角点的,它们之间有着一脉相承的关系。

寻找Harris、Shi-Tomasi和亚像素角点的更多相关文章

  1. OpenCV亚像素角点cornerSubPixel()源代码分析

    上一篇博客中讲到了goodFeatureToTrack()这个API函数能够获取图像中的强角点.但是获取的角点坐标是整数,但是通常情况下,角点的真实位置并不一定在整数像素位置,因此为了获取更为精确的角 ...

  2. OpenCV——Harris、Shi Tomas、自定义、亚像素角点检测

    #include <opencv2/opencv.hpp> #include <iostream> using namespace cv; using namespace st ...

  3. OpenCV亚像素级的角点检测

    亚像素级的角点检测 目标 在本教程中我们将涉及以下内容: 使用OpenCV函数 cornerSubPix 寻找更精确的角点位置 (不是整数类型的位置,而是更精确的浮点类型位置). 理论 代码 这个教程 ...

  4. opencv亚像素级角点检测

    一般角点检测: harris cv::cornerHarris() shi-tomasi cv::goodFeaturesToTrack() 亚像素级角点检测是在一般角点检测基础之上将检测出的角点精确 ...

  5. Paper | 亚像素运动补偿 + 视频超分辨

    目录 1. ABSTRACT 2. INTRODUCTION 3. RELATED WORKS 4. SUB-PIXEL MOTION COMPENSATION (SPMC) 5. OUR METHO ...

  6. 亚像素Sub Pixel

    亚像素Sub Pixel 评估图像处理算法时,通常会考虑是否具有亚像素精度. 亚像素概念的引出: 图像处理过程中,提高检测方法的精度一般有两种方式:一种是提高图像系统的光学放大倍数和CCD相机的分辨率 ...

  7. 【工程应用七】接着折腾模板匹配算法 (Optimization选项 + no_pregeneration模拟 + 3D亚像素插值)

    在折腾中成长,在折腾中永生. 接着玩模板匹配,最近主要研究了3个课题. 1.创建模型的Optimization选项模拟(2022.5.16日) 这两天又遇到一个做模板匹配隐藏的高手,切磋起来后面就还是 ...

  8. Opencv 亚像素级别角点检测

    Size winSize = Size(5,5); Size zerozone = Size(-1,-1); TermCriteria tc = TermCriteria(TermCriteria:: ...

  9. OpenCV 亚像素级的角点检测

    #include "opencv2/highgui/highgui.hpp" #include "opencv2/imgproc/imgproc.hpp" #i ...

随机推荐

  1. Vmware虚拟机三种网络模式详解

    原文来自http://note.youdao.com/share/web/file.html?id=236896997b6ffbaa8e0d92eacd13abbf&type=note 我怕链 ...

  2. Python 导入模块

    导入模块 方法1:import  模块名                      //导入整个模块,调用方法时,需要加上模块名 方法2:from  模块名  import  方法           ...

  3. HtmlCleaner CleanerProperties 参数配置(转自macken博客,链接:http://macken.iteye.com/blog/1579809)

    HtmlCleaner CleanerProperties 参数配置 Parameter Default Explanation advancedXmlEscape true If this para ...

  4. POJ-1861-NETWORK 解题报告

    Network Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 16628   Accepted: 6597   Specia ...

  5. 放开那个UI 妹子,让我来(上)

    一.前言 今天要学习的内容:今天主要是稍微总结一下,页面中如何用字体代替图片,省事,省时,方便,实用! 小苏啰嗦:人都是有惰性的.真的.刚开始我们有一个经验丰富的美工,加上我们关系又非常好,以至于每次 ...

  6. C++STL之String

    本文直接转载,非原创!仅记录供自己学习之用. 出处:http://blog.csdn.net/y990041769/article/details/8763366 在学习c++STL中的string, ...

  7. SolrCloud(一)搭建Zookeeper

    搭建Zookeeper 三台服务器: AMouse: 192.168.3.201 BCattle : 192.168.3.202 Ctiger   : 192.168.3.203 一 下载Zookee ...

  8. RMAN 备份异机恢复 并创建新DBID

    测试平台信息: Oracle:11gR2 操作系统:Redhat 5.5 Target DB:dave   几点说明: (1)RMAN 异机恢复的时候,db_name必须相同. 如果说要想改成其他的实 ...

  9. 《STL源码剖析》相关面试题总结

    原文链接:http://www.cnblogs.com/raichen/p/5817158.html 一.STL简介 STL提供六大组件,彼此可以组合套用: 容器容器就是各种数据结构,我就不多说,看看 ...

  10. cygwin环境c语言开发

    . 在windows上开发c语言,使用sublime编辑器 在工具栏tools-->run 结果报错,原因是没有在GNU环境下使用sublime text2 在 cygwin环境下启动subli ...