寻找Harris、Shi-Tomasi和亚像素角点
Harris、Shi-Tomasi和亚像素角点都是角点,隶属于特征点这个大类(特征点可以分为边缘、角点、斑点).
| void cv::cornerHarris | ( | InputArray | src, //需要为8位单通道 |
| OutputArray | dst, //结果 | ||
| int | blockSize, //领域大小 | ||
| int | ksize, //Sobel孔径大小 | ||
| double | k, //Harris参数 | ||
| int | borderType = BORDER_DEFAULT |
||
| ) |
Harris corner detector.
The function runs the Harris corner detector on the image. Similarly to cornerMinEigenVal and cornerEigenValsAndVecs , for each pixel (x, y) it calculates a 2\times2 gradient covariance matrix M^{(x,y)} over a \texttt{blockSize} \times \texttt{blockSize} neighborhood. Then, it computes the following characteristic:
(特征点计算方法)
Corners in the image can be found as the local maxima of this response map.
- Parameters
-
src Input single-channel 8-bit or floating-point image. dst Image to store the Harris detector responses. It has the type CV_32FC1 and the same size as src . blockSize Neighborhood size (see the details on cornerEigenValsAndVecs ). ksize Aperture parameter for the Sobel operator. k Harris detector free parameter. See the formula below. borderType Pixel extrapolation method. See cv::BorderTypes.
.,,THRESH_BINARY);
imshow();

| void cv::goodFeaturesToTrack | ( | InputArray | image,//输入图像 |
| OutputArray | corners,//输出向量 | ||
| int | maxCorners,//角点最大数量 | ||
| double | qualityLevel,//角点检测可接受的最小特征值 | ||
| double | minDistance,//角点之间的最小距离 | ||
| InputArray | mask = noArray(),//感兴趣区域 |
||
| int | blockSize = 3,//领域范围 |
||
| bool | useHarrisDetector = false,//true为harris;false为Shi-Tomasi |
||
| double | k = 0.04 //权重系数 |
||
| ) |
Determines strong corners on an image.
The function finds the most prominent corners in the image or in the specified image region, as described in [154]
- Function calculates the corner quality measure at every source image pixel using the cornerMinEigenVal or cornerHarris .
- Function performs a non-maximum suppression (the local maximums in 3 x 3 neighborhood are retained).
- The corners with the minimal eigenvalue less than qualityLevel⋅maxx,yqualityMeasureMap(x,y) are rejected.
- The remaining corners are sorted by the quality measure in the descending order.
- Function throws away each corner for which there is a stronger corner at a distance less than maxDistance.
The function can be used to initialize a point-based tracker of an object.
- Note
- If the function is called with different values A and B of the parameter qualityLevel , and A > B, the vector of returned corners with qualityLevel=A will be the prefix of the output vector with qualityLevel=B .
- Parameters
-
image Input 8-bit or floating-point 32-bit, single-channel image. corners Output vector of detected corners. maxCorners Maximum number of corners to return. If there are more corners than are found, the strongest of them is returned. maxCorners <= 0implies that no limit on the maximum is set and all detected corners are returned.qualityLevel Parameter characterizing the minimal accepted quality of image corners. The parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue (see cornerMinEigenVal ) or the Harris function response (see cornerHarris ). The corners with the quality measure less than the product are rejected. For example, if the best corner has the quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure less than 15 are rejected. minDistance Minimum possible Euclidean distance between the returned corners. mask Optional region of interest. If the image is not empty (it needs to have the type CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected. blockSize Size of an average block for computing a derivative covariation matrix over each pixel neighborhood. See cornerEigenValsAndVecs . useHarrisDetector Parameter indicating whether to use a Harris detector (see cornerHarris) or cornerMinEigenVal. k Free parameter of the Harris detector.
;i,Scalar());
}
imshow();

| void cv::cornerSubPix | ( | InputArray | image, |
| InputOutputArray | corners, | ||
| Size | winSize, | ||
| Size | zeroZone, | ||
| TermCriteria | criteria | ||
| ) |
cout);

寻找Harris、Shi-Tomasi和亚像素角点的更多相关文章
- OpenCV亚像素角点cornerSubPixel()源代码分析
上一篇博客中讲到了goodFeatureToTrack()这个API函数能够获取图像中的强角点.但是获取的角点坐标是整数,但是通常情况下,角点的真实位置并不一定在整数像素位置,因此为了获取更为精确的角 ...
- OpenCV——Harris、Shi Tomas、自定义、亚像素角点检测
#include <opencv2/opencv.hpp> #include <iostream> using namespace cv; using namespace st ...
- OpenCV亚像素级的角点检测
亚像素级的角点检测 目标 在本教程中我们将涉及以下内容: 使用OpenCV函数 cornerSubPix 寻找更精确的角点位置 (不是整数类型的位置,而是更精确的浮点类型位置). 理论 代码 这个教程 ...
- opencv亚像素级角点检测
一般角点检测: harris cv::cornerHarris() shi-tomasi cv::goodFeaturesToTrack() 亚像素级角点检测是在一般角点检测基础之上将检测出的角点精确 ...
- Paper | 亚像素运动补偿 + 视频超分辨
目录 1. ABSTRACT 2. INTRODUCTION 3. RELATED WORKS 4. SUB-PIXEL MOTION COMPENSATION (SPMC) 5. OUR METHO ...
- 亚像素Sub Pixel
亚像素Sub Pixel 评估图像处理算法时,通常会考虑是否具有亚像素精度. 亚像素概念的引出: 图像处理过程中,提高检测方法的精度一般有两种方式:一种是提高图像系统的光学放大倍数和CCD相机的分辨率 ...
- 【工程应用七】接着折腾模板匹配算法 (Optimization选项 + no_pregeneration模拟 + 3D亚像素插值)
在折腾中成长,在折腾中永生. 接着玩模板匹配,最近主要研究了3个课题. 1.创建模型的Optimization选项模拟(2022.5.16日) 这两天又遇到一个做模板匹配隐藏的高手,切磋起来后面就还是 ...
- Opencv 亚像素级别角点检测
Size winSize = Size(5,5); Size zerozone = Size(-1,-1); TermCriteria tc = TermCriteria(TermCriteria:: ...
- OpenCV 亚像素级的角点检测
#include "opencv2/highgui/highgui.hpp" #include "opencv2/imgproc/imgproc.hpp" #i ...
随机推荐
- C++ STL 双端队列deque详解
一.解释 Deque(双端队列)是一种具有队列和栈的性质的数据结构.双端队列的元素可以从两端弹出,其限定插入和删除操作在表的两端进行. 二.常用操作: 1.头文件 #include <deque ...
- Comparable与Comparator,java中的排序与比较
1:比较和排序的概念 比较:两个实体类之间按>,=,<进行比较. 排序:在集合类中,对集合类中的实体进行排序.排序基于的算法基于实体类提供的比较函数. 基本型别都提供了默认的比较算法,如s ...
- NYOJ--95--multiset--众数问题
/* Name: NYOJ--95--众数问题 Date: 20/04/17 16:02 Description: multiset水过 */ #include<set> #include ...
- cve-2017-8464 复现 快捷方式远程代码执行
cve-2017-8464 2017年6月13日,微软官方发布编号为CVE-2017-8464的漏洞公告,官方介绍Windows系统在解析快捷方式时存在远程执行任意代码的高危漏洞,黑客可以通过U盘.网 ...
- 【机器学习笔记之一】深入浅出学习K-Means算法
摘要:在数据挖掘中,K-Means算法是一种 cluster analysis 的算法,其主要是来计算数据聚集的算法,主要通过不断地取离种子点最近均值的算法. 在数据挖掘中,K-Means算法是一种c ...
- MySQL多字节字符集造成主从数据不一致问题
MySQL多字节字符集造成主从数据不一致问题 来自江羽 2013-04-27 16:03:56| 分类: 默认分类|举报|字号 订阅 转载: http://backend.blog.163.co ...
- 第一阶段项目(2 body)
body属性 <div class="H1"> <div class="top-nav"> <div class="tn ...
- 等待与希望,.NET Core 的发展壮大
前几天微软推出了.net core 2.0, 尽管我现在使用的技术栈和微软已经没有一丝瓜葛, 但碰到微软放大招,心里还是瘙痒难当,忍不住偷偷摸摸的体验了一把. 谁叫我是通过微软系技术入的行呢,旧情难忘 ...
- 【转载】B树、B-树、B+树、B*树
转载自http://blog.csdn.net/manesking/archive/2007/02/09/1505979.aspx B树 即二叉搜索树: 1.所有非叶子结点至多拥有两个儿子(Left和 ...
- 利用pyinotify监控文件内容,像tailf命令但比它更强
Linux的tail/tailf命令使用了内核提供的inotify功能,下面的Python例子也使用inotify实现比tail/tailf更强的监控文件功能. watchfile.py #!/usr ...