数据挖掘 ID3
本文讲的是数据挖掘中的ID3,这个有很多人做了,我也没有说什么改善,只是要考试,用我考试记录的来写,具有很大主观性,如果看到有觉得不对或感觉不好,请关掉浏览器或和我说,请不要生气或发不良的言论。
决策树使用属性划分
那么简单的,我有一只猫,不是吃的东西他就回去吃,吃的东西中,不给猫吃的,他就会吃。那么我们拿出一个东西,他就会根据构建的判断
ID3算法是由Quinlan首先提出的,该算法是以信息论为基础,以信息熵和信息增益为衡量标准,从而实现对数据的归纳分类。
ID3就是判断那个属性作为节点,例如上面说的,我们有属性 吃的、给猫吃的,两个属性,ID3判断那个属性作为第一个节点,选取完了第一个节点吃的,就从剩下的属性选取。
信息熵
ID3判断是用信息熵,信息熵就是主要是指信息的混乱程度,变量的不确定性越大,熵的值也就越大,这是香农提出,熵的公式可以表示为:
其中 ,是类别在S出现概率。
信息不确定大,熵越大,所以把它分离作为节点得到信息多,如果一个熵为0,那么就不用分裂,表示确定,例如看到水100度,得到结果他沸在常温下
信息增益
信息增益(Information gain) 指的是划分前后熵的变化,可以用下面的公式表示:
其中,A表示样本的属性,是属性A所有的取值集合。V是A其中一个属性值,是S中A的值为V样例的集合。
那么看到这觉得不知道我在说什么,简答例子
我们先用别的大神例子,假如还是我们那个用某人是否网球天气
|
Day |
Outlook |
Temperature |
Humidity |
Wind |
PlayTennis |
|
D1 |
Sunny |
Hot |
High |
Weak |
No |
|
D2 |
Sunny |
Hot |
High |
Strong |
No |
|
D3 |
Overcast |
Hot |
High |
Weak |
Yes |
|
D4 |
Rain |
Mild |
High |
Weak |
Yes |
|
D5 |
Rain |
Cool |
Normal |
Weak |
Yes |
|
D6 |
Rain |
Cool |
Normal |
Strong |
No |
|
D7 |
Overcast |
Cool |
Normal |
Strong |
Yes |
|
D8 |
Sunny |
Mild |
High |
Weak |
No |
|
D9 |
Sunny |
Cool |
Normal |
Weak |
Yes |
|
D10 |
Rain |
Mild |
Normal |
Weak |
Yes |
|
D11 |
Sunny |
Mild |
Normal |
Strong |
Yes |
|
D12 |
Overcast |
Mild |
High |
Strong |
Yes |
|
D13 |
Overcast |
Hot |
Normal |
Weak |
Yes |
|
D14 |
Rain |
Mild |
High |
Strong |
No |
未知 Outlook=sunny, Temperature=cool,Humidity=high,Wind=strong
那么我们根据现在数据
计算信息熵
我们yes存在9,no存在4,根据
对每个属性计算,OUTLOOK属性中,有3个取值:Sunny、Overcast和Rainy,样本分布情况如下:
类别为Yes时,Sunny有2个样本;类别为No时,Sunny有3个样本。
类别为Yes时,Overcast有4个样本;类别为No时,Overcast有0个样本。
类别为Yes时,Rainy有3个样本;类别为No时,Rainy有2个样本。
接着对所有属性计算
信息增益
选出最大OutLook,然后把OutLook做节点,依靠不用属性分为多个集合,再对每个集合计算信息增益得到节点,直到不能再分。
我们得到决策树就可以把我们要分的属性依靠决策树来分,这个方法已经很老,现在比较少用
参考:http://shiyanjun.cn/archives/417.html

本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可。欢迎转载、使用、重新发布,但务必保留文章署名林德熙(包含链接:http://blog.csdn.net/lindexi_gd ),不得用于商业目的,基于本文修改后的作品务必以相同的许可发布。如有任何疑问,请与我联系。
数据挖掘 ID3的更多相关文章
- ID3和C4.5分类决策树算法 - 数据挖掘算法(7)
(2017-05-18 银河统计) 决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来判断其可行性的决策分析方法,是直观运用概率分析的一种图解法.由于这种决策分支画 ...
- 数据挖掘之决策树ID3算法(C#实现)
决策树是一种非常经典的分类器,它的作用原理有点类似于我们玩的猜谜游戏.比如猜一个动物: 问:这个动物是陆生动物吗? 答:是的. 问:这个动物有鳃吗? 答:没有. 这样的两个问题顺序就有些颠倒,因为一般 ...
- 数据挖掘 决策树算法 ID3 通俗演绎
决策树是对数据进行分类,以此达到预測的目的.该决策树方法先依据训练集数据形成决策树,假设该树不能对全部对象给出正确的分类,那么选择一些例外添�到训练集数据中,反复该过程一直到形成正确的决策集.决策树代 ...
- 数据挖掘中ID3算法实现zz
id3 function D = ID3(train_features, train_targets, params, region) % Classify using Quinlan's ID3 a ...
- 跟我一起数据挖掘(23)——C4.5
C4.5简介 C4.5是一系列用在机器学习和数据挖掘的分类问题中的算法.它的目标是监督学习:给定一个数据集,其中的每一个元组都能用一组属性值来描述,每一个元组属于一个互斥的类别中的某一类.C4.5的目 ...
- 【十大经典数据挖掘算法】C4.5
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 决策树模型与学习 决策树(de ...
- 《BI那点儿事》数据挖掘的主要方法
一.回归分析目的:设法找出变量间的依存(数量)关系, 用函数关系式表达出来.所谓回归分析法,是在掌握大量观察数据的基础上,利用数理统计方法建立因变量与自变量之间的回归关系函数表达式(称回归方程式).回 ...
- 决策树-预测隐形眼镜类型 (ID3算法,C4.5算法,CART算法,GINI指数,剪枝,随机森林)
1. 1.问题的引入 2.一个实例 3.基本概念 4.ID3 5.C4.5 6.CART 7.随机森林 2. 我们应该设计什么的算法,使得计算机对贷款申请人员的申请信息自动进行分类,以决定能否贷款? ...
- 机器学习&&数据挖掘之一:决策树基础认识
决策树入门篇 前言:分类是数据挖掘中的主要分析手段,其任务就是对数据集进行学习并构造一个拥有预测功能的分类模型,用于预测未知样本的类标号,把类标号未知的样本按照某一规则映射到预先给定的类标号中. 分类 ...
随机推荐
- Swing-JTable用法-入门
注:本文为学习笔记,原文为How to Use Tables,本文所有素材与代码均源于原文,可能会有部分更改. JTable是Swing中的表格控件,它的外观如下所示: 没错,excel或者acces ...
- spring在扫描包中的注解类时出现Failed to read candidate component错误
出现:org.springframework.beans.factory.BeanDefinitionStoreException: Failed to read candidate componen ...
- 201521123106 《Java程序设计》第11周学习总结
1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结多线程相关内容. 2. 书面作业 本次PTA作业题集多线程 互斥访问与同步访问 完成题集4-4(互斥访问)与4-5(同步访问) 1. ...
- Eclipse rap 富客户端开发总结(3):rcp/rap目前界面上的一些差异
1. Label和Button按钮的显示的差异 当Label 和 Button显示的文字过长显示不开的时候,rcp.rap的处理方式就不一样了,rap显示不开会自己截取掉后面的文字,rcp会在文字的中 ...
- 技巧收集-M1709
2017.09 在macOS中直接复制文件路径,在Finder中选中文件,按下快捷键:Command + Option + C *** 以KB,MB,GB方式显示文件大小 ls -lh 删除超大文本文 ...
- Sql Server——运用代码创建数据库及约束
在没有学习运用代码创建数据库.表和约束之前,我们只能用鼠标点击操作,这样看起来就不那么直观(高大上)了. 在写代码前要知道在哪里写和怎么运行: 点击新建查询,然后中间的白色空白地方就是写代码的地方了. ...
- JavaScript面向对象(三)——继承与闭包、JS实现继承的三种方式
前 言 JRedu 在之前的两篇博客中,我们详细探讨了JavaScript OOP中的各种知识点(JS OOP基础与JS 中This指向详解 . 成员属性.静态属性.原型属性与JS原型链).今天 ...
- 深入理解计算机系统chapter5
编写高效的程序需要:1.选择合适的数据结构和算法 2.编译器能够有效优化以转换为高效可执行代码的源代码 3.利用并行性 优化编译器的局限性 程序示例: combine3的汇编代码: load-> ...
- Tomcat启动错误【Error listenerStart】
今天启动Tomcat启动不了,报以下错: org.apache.catalina.core.StandardContext startInternal SEVERE: Error listenerSt ...
- 51nod 1126 求递推序列的第N项 思路:递推模拟,求循环节。详细注释
题目: 看起来比较难,范围10^9 O(n)都过不了,但是仅仅是看起来.(虽然我WA了7次 TLE了3次,被自己蠢哭) 我们观察到 0 <= f[i] <= 6 就简单了,就像小学初中学的 ...