使用sklearn进行数据挖掘系列文章:

可视化数据###

目前我们只是大概了解了数据的类型,以及对数据集进行了划分,下面我们要对数据进行更深一步的探索,以下的操作只在训练集上面进行,由于该数据集比较的小,我们就直接在数据集上面进行操作,为了防止数据集被修改,我们先复制一份。

housing = strat_train_set.copy()

这个数据集提供经纬度这些地理位置信息,那么我们可以根据这些信息将数据分布绘制出来



看着像什么?你没有猜错,这就是加利福尼亚州的形状,这个图形看着有点稠密,可以通过设置alpha来设置图形的显示。



我们对图像敏感,但要发现图像中的某些规律还是需要我们调节一下参数的,现在我们就能清楚的从图中看到稠密的地区了,接下来我们将房价、人口也加入图中,

import matplotlib.pyplot as plt
housing.plot(kind="scatter", x="longitude", y="latitude", alpha=0.4,
s=housing["population"]/100, label="population", figsize=(10,7),
c="median_house_value", cmap=plt.get_cmap("jet"), colorbar=True,
sharex=False)
plt.legend()



图中的小圆圈是代表该区域的人口由参数s控制,颜色代表该区域的房价由参数c控制。

从上面的图中可以得出一些规律:房价不仅与地理位置有关,还和人口稠密度有关,这些也都是一些常识。

相关性

下面我们看一看各个特征与median_house_value这一特征的相关性,使用的是皮尔逊相关系数Pearson

corr_matrix = housing.corr()
>>print corr_matrix['median_house_value'].sort_values(ascending=False)
median_house_value 1.000000
median_income 0.687160
total_rooms 0.135097
housing_median_age 0.114110
households 0.064506
total_bedrooms 0.047689
population -0.026920
longitude -0.047432
latitude -0.142724
Name: median_house_value, dtype: float64

相关系数的取值范围为[-1,1],当值趋近1时,表示特征之间具有强的正相关性,反之为负相关。值趋近于0表示特征之间不存在线性关系。值得注意的是,这里说的相关性只针对线性相关。如果为非线性关系则该衡量标准失效,如下图最后一行,它们的相关系数为0,显然他们是存在某种关系的。第二行的相关性都为1或-1说明了相关性与斜率无关。



上面是通过计算相关系数矩阵找出特征之间的相关性,还有一种方法是通过绘制特征之间分布,pandas提供了scatter_matrix方法,顾名思义就是使用散点图形式绘制出特征与特征之间的关系。取出相关系数排名前四的特征作为我们需要绘制的属性,会得到一个4*4个图像,代码如下:

from pandas.tools.plotting import scatter_matrix
attribute = ['median_house_value','median_income','total_rooms','housing_median_age']
scatter_matrix(housing[attribute],figsize=(10,6))

特征的组合###

前面介绍了通过可视化数据的方法来从发现潜在的规律,我们发现了特征之间的关系、还发现了一些特征有着长尾分布,以上发现的这些规律有助于我们对特征进行选择,或者对数据进行转化(如取log)等等,还有一个步骤我们可以尝试使用,那就是特征组合。在这里本文使用了总房间数、家庭人数以及人口数这三个特征的组合。

housing["rooms_per_household"] = housing["total_rooms"]/housing["households"]
housing["bedrooms_per_room"] = housing["total_bedrooms"]/housing["total_rooms"]
housing["population_per_household"]=housing["population"]/housing["households"] corr_matrix = housing.corr()
print corr_matrix["median_house_value"].sort_values(ascending=False)

相关系数结果:

median_house_value          1.000000
median_income 0.687160
rooms_per_household 0.146285 //
total_rooms 0.135097
housing_median_age 0.114110
households 0.064506
total_bedrooms 0.047689
population_per_household -0.021985//
population -0.026920
longitude -0.047432
latitude -0.142724
bedrooms_per_room -0.259984//

从上面结果可以看出bedrooms_per_roomtotal_bedrooms 有着更高的相关性,bedrooms/rooms比越小的房价越高,从rooms_per_household可以看出,房子越大房价越贵。

使用sklearn进行数据挖掘-房价预测(3)—绘制数据的分布的更多相关文章

  1. 使用sklearn进行数据挖掘-房价预测(4)—数据预处理

    在使用机器算法之前,我们先把数据做下预处理,先把特征和标签拆分出来 housing = strat_train_set.drop("median_house_value",axis ...

  2. 使用sklearn进行数据挖掘-房价预测(6)—模型调优

    通过上一节的探索,我们会得到几个相对比较满意的模型,本节我们就对模型进行调优 网格搜索 列举出参数组合,直到找到比较满意的参数组合,这是一种调优方法,当然如果手动选择并一一进行实验这是一个十分繁琐的工 ...

  3. 使用sklearn进行数据挖掘-房价预测(1)

    使用sklearn进行数据挖掘系列文章: 1.使用sklearn进行数据挖掘-房价预测(1) 2.使用sklearn进行数据挖掘-房价预测(2)-划分测试集 3.使用sklearn进行数据挖掘-房价预 ...

  4. 使用sklearn进行数据挖掘-房价预测(2)—划分测试集

    使用sklearn进行数据挖掘系列文章: 1.使用sklearn进行数据挖掘-房价预测(1) 2.使用sklearn进行数据挖掘-房价预测(2)-划分测试集 3.使用sklearn进行数据挖掘-房价预 ...

  5. 使用sklearn进行数据挖掘-房价预测(5)—训练模型

    使用sklearn进行数据挖掘系列文章: 1.使用sklearn进行数据挖掘-房价预测(1) 2.使用sklearn进行数据挖掘-房价预测(2)-划分测试集 3.使用sklearn进行数据挖掘-房价预 ...

  6. 基于sklearn的波士顿房价预测_线性回归学习笔记

    > 以下内容是我在学习https://blog.csdn.net/mingxiaod/article/details/85938251 教程时遇到不懂的问题自己查询并理解的笔记,由于sklear ...

  7. 第十三次作业——回归模型与房价预测&第十一次作业——sklearn中朴素贝叶斯模型及其应用&第七次作业——numpy统计分布显示

    第十三次作业——回归模型与房价预测 1. 导入boston房价数据集 2. 一元线性回归模型,建立一个变量与房价之间的预测模型,并图形化显示. 3. 多元线性回归模型,建立13个变量与房价之间的预测模 ...

  8. Ames房价预测特征工程

    最近学人工智能,讲到了Kaggle上的一个竞赛任务,Ames房价预测.本文将描述一下数据预处理和特征工程所进行的操作,具体代码Click Me. 原始数据集共有特征81个,数值型特征38个,非数值型特 ...

  9. Python之机器学习-波斯顿房价预测

    目录 波士顿房价预测 导入模块 获取数据 打印数据 特征选择 散点图矩阵 关联矩阵 训练模型 可视化 波士顿房价预测 导入模块 import pandas as pd import numpy as ...

随机推荐

  1. Python练习----购物车

    要求: 1.启动程序后,输入用户名密码后,如果是第一次登录,让用户输入工资,然后打印商品列表 2.允许用户根据商品编号购买商品 3.用户选择商品后,检测余额是否够,够就直接扣款,不够就提醒 4.可随时 ...

  2. (转) Redis学习教程--基本命令

    原文出自:http://www.cnblogs.com/woshimrf/p/5198361.html 目录 全局操作:1.redis是key-value存储的,放在内存中,并在磁盘持久化的数据结构存 ...

  3. JSP前后台数据交互

    1.一般方法:在页面加载时载入数据 首先,新建一个包,在包内创建一个类,类实现接口Servlet-javax.servlet 然后,在web.xml文件里配置如下 <?xml version=& ...

  4. 【深度学习】keras + tensorflow 实现猫和狗图像分类

    本文主要是使用[监督学习]实现一个图像分类器,目的是识别图片是猫还是狗. 从[数据预处理]到 [图片预测]实现一个完整的流程, 当然这个分类在 Kaggle 上已经有人用[迁移学习](VGG,Resn ...

  5. TensorFlow Object Detection API(Windows下训练)

    本文为作者原创,转载请注明出处(http://www.cnblogs.com/mar-q/)by 负赑屃 最近事情比较多,前面坑挖的有点久,今天终于有时间总结一下,顺便把Windows下训练跑通.Li ...

  6. Javascript的RegExp对象(转载自网络)

    正则表达式是一个描述字符模式的对象. JavaScript的RegExp对象和String对象定义了使用正则表达式来执行强大的模式匹配和文本检索与替换函数的方法. '***************** ...

  7. poj2689Prime Distance(大区间筛素数)

    Prime Distance Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 19635   Accepted: 5273 D ...

  8. js中typeof的用法汇总[转载]

    http://www.jb51.net/article/43187.htm JavaScript中的typeof其实非常复杂,它可以用来做很多事情,但同时也有很多怪异的表现.本文列举出了它的多个用法, ...

  9. CentOS7修改网卡名称,禁用ipv6

    有时候新装的CentOS7系统网卡默认名称是eno16777736,为方便改成传统eth0 修改网络配置文件 # cd /etc/sysconfig/network-script/ # vim ifc ...

  10. Netty——高级发送和接收数据handler处理器

    netty发送和接收数据handler处理器 主要是继承 SimpleChannelInboundHandler 和 ChannelInboundHandlerAdapter 一般用netty来发送和 ...