使用sklearn进行数据挖掘系列文章:

可视化数据###

目前我们只是大概了解了数据的类型,以及对数据集进行了划分,下面我们要对数据进行更深一步的探索,以下的操作只在训练集上面进行,由于该数据集比较的小,我们就直接在数据集上面进行操作,为了防止数据集被修改,我们先复制一份。

housing = strat_train_set.copy()

这个数据集提供经纬度这些地理位置信息,那么我们可以根据这些信息将数据分布绘制出来



看着像什么?你没有猜错,这就是加利福尼亚州的形状,这个图形看着有点稠密,可以通过设置alpha来设置图形的显示。



我们对图像敏感,但要发现图像中的某些规律还是需要我们调节一下参数的,现在我们就能清楚的从图中看到稠密的地区了,接下来我们将房价、人口也加入图中,

import matplotlib.pyplot as plt
housing.plot(kind="scatter", x="longitude", y="latitude", alpha=0.4,
s=housing["population"]/100, label="population", figsize=(10,7),
c="median_house_value", cmap=plt.get_cmap("jet"), colorbar=True,
sharex=False)
plt.legend()



图中的小圆圈是代表该区域的人口由参数s控制,颜色代表该区域的房价由参数c控制。

从上面的图中可以得出一些规律:房价不仅与地理位置有关,还和人口稠密度有关,这些也都是一些常识。

相关性

下面我们看一看各个特征与median_house_value这一特征的相关性,使用的是皮尔逊相关系数Pearson

corr_matrix = housing.corr()
>>print corr_matrix['median_house_value'].sort_values(ascending=False)
median_house_value 1.000000
median_income 0.687160
total_rooms 0.135097
housing_median_age 0.114110
households 0.064506
total_bedrooms 0.047689
population -0.026920
longitude -0.047432
latitude -0.142724
Name: median_house_value, dtype: float64

相关系数的取值范围为[-1,1],当值趋近1时,表示特征之间具有强的正相关性,反之为负相关。值趋近于0表示特征之间不存在线性关系。值得注意的是,这里说的相关性只针对线性相关。如果为非线性关系则该衡量标准失效,如下图最后一行,它们的相关系数为0,显然他们是存在某种关系的。第二行的相关性都为1或-1说明了相关性与斜率无关。



上面是通过计算相关系数矩阵找出特征之间的相关性,还有一种方法是通过绘制特征之间分布,pandas提供了scatter_matrix方法,顾名思义就是使用散点图形式绘制出特征与特征之间的关系。取出相关系数排名前四的特征作为我们需要绘制的属性,会得到一个4*4个图像,代码如下:

from pandas.tools.plotting import scatter_matrix
attribute = ['median_house_value','median_income','total_rooms','housing_median_age']
scatter_matrix(housing[attribute],figsize=(10,6))

特征的组合###

前面介绍了通过可视化数据的方法来从发现潜在的规律,我们发现了特征之间的关系、还发现了一些特征有着长尾分布,以上发现的这些规律有助于我们对特征进行选择,或者对数据进行转化(如取log)等等,还有一个步骤我们可以尝试使用,那就是特征组合。在这里本文使用了总房间数、家庭人数以及人口数这三个特征的组合。

housing["rooms_per_household"] = housing["total_rooms"]/housing["households"]
housing["bedrooms_per_room"] = housing["total_bedrooms"]/housing["total_rooms"]
housing["population_per_household"]=housing["population"]/housing["households"] corr_matrix = housing.corr()
print corr_matrix["median_house_value"].sort_values(ascending=False)

相关系数结果:

median_house_value          1.000000
median_income 0.687160
rooms_per_household 0.146285 //
total_rooms 0.135097
housing_median_age 0.114110
households 0.064506
total_bedrooms 0.047689
population_per_household -0.021985//
population -0.026920
longitude -0.047432
latitude -0.142724
bedrooms_per_room -0.259984//

从上面结果可以看出bedrooms_per_roomtotal_bedrooms 有着更高的相关性,bedrooms/rooms比越小的房价越高,从rooms_per_household可以看出,房子越大房价越贵。

使用sklearn进行数据挖掘-房价预测(3)—绘制数据的分布的更多相关文章

  1. 使用sklearn进行数据挖掘-房价预测(4)—数据预处理

    在使用机器算法之前,我们先把数据做下预处理,先把特征和标签拆分出来 housing = strat_train_set.drop("median_house_value",axis ...

  2. 使用sklearn进行数据挖掘-房价预测(6)—模型调优

    通过上一节的探索,我们会得到几个相对比较满意的模型,本节我们就对模型进行调优 网格搜索 列举出参数组合,直到找到比较满意的参数组合,这是一种调优方法,当然如果手动选择并一一进行实验这是一个十分繁琐的工 ...

  3. 使用sklearn进行数据挖掘-房价预测(1)

    使用sklearn进行数据挖掘系列文章: 1.使用sklearn进行数据挖掘-房价预测(1) 2.使用sklearn进行数据挖掘-房价预测(2)-划分测试集 3.使用sklearn进行数据挖掘-房价预 ...

  4. 使用sklearn进行数据挖掘-房价预测(2)—划分测试集

    使用sklearn进行数据挖掘系列文章: 1.使用sklearn进行数据挖掘-房价预测(1) 2.使用sklearn进行数据挖掘-房价预测(2)-划分测试集 3.使用sklearn进行数据挖掘-房价预 ...

  5. 使用sklearn进行数据挖掘-房价预测(5)—训练模型

    使用sklearn进行数据挖掘系列文章: 1.使用sklearn进行数据挖掘-房价预测(1) 2.使用sklearn进行数据挖掘-房价预测(2)-划分测试集 3.使用sklearn进行数据挖掘-房价预 ...

  6. 基于sklearn的波士顿房价预测_线性回归学习笔记

    > 以下内容是我在学习https://blog.csdn.net/mingxiaod/article/details/85938251 教程时遇到不懂的问题自己查询并理解的笔记,由于sklear ...

  7. 第十三次作业——回归模型与房价预测&第十一次作业——sklearn中朴素贝叶斯模型及其应用&第七次作业——numpy统计分布显示

    第十三次作业——回归模型与房价预测 1. 导入boston房价数据集 2. 一元线性回归模型,建立一个变量与房价之间的预测模型,并图形化显示. 3. 多元线性回归模型,建立13个变量与房价之间的预测模 ...

  8. Ames房价预测特征工程

    最近学人工智能,讲到了Kaggle上的一个竞赛任务,Ames房价预测.本文将描述一下数据预处理和特征工程所进行的操作,具体代码Click Me. 原始数据集共有特征81个,数值型特征38个,非数值型特 ...

  9. Python之机器学习-波斯顿房价预测

    目录 波士顿房价预测 导入模块 获取数据 打印数据 特征选择 散点图矩阵 关联矩阵 训练模型 可视化 波士顿房价预测 导入模块 import pandas as pd import numpy as ...

随机推荐

  1. [转载]Vector用法(C++ Primer中文版)

    转自:http://blog.sciencenet.cn/blog-261330-551086.html vector 是同一种类型的对象的集合,每个对象都有一个对应的整数索引值.和 string 对 ...

  2. kettle系列一之eclipse开发

    1.引言 最近公司开始一个etl项目,底层结合开源的kettle进行开发.那么学习kettle势在必行,kettle的使用在这里就不用介绍了,网上有很多的资料.例如:kettle中文社区,我们在这里主 ...

  3. 使用 paddle来进行文本生成

    paddle 简单介绍 paddle 是百度在2016年9月份开源的深度学习框架. 就我最近体验的感受来说的它具有几大优点: 1. 本身内嵌了许多和实际业务非常贴近的模型比如个性化推荐,情感分析,词向 ...

  4. ASP.NET MVC 分页

    概述:数据比较多的时候,常使用分页.这里使用bootpag.js和PagedList这两个插件实现. 准备JS的引用 1.这个是bootstrap 中pagination的库 2..NET后台ToPa ...

  5. bootstrap select多选

    1.页面效果 <div class="form-group"> <div class="col-md-2 control-label"> ...

  6. 数据模型(LP32 ILP32 LP64 LLP64 ILP64 )

    数据模型(LP32 ILP32 LP64 LLP64 ILP64 ) 32位环境涉及"ILP32"数据模型,是因为C数据类型为32位的int.long.指针.而64位环境使用不同的 ...

  7. poj 1155 TELE(树形DP)

    TELE Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4863   Accepted: 2673 Description ...

  8. css中单位 px、em 的区别【转载】

    原文:http://www.admin10000.com/document/6267.html     在国内网站中,包括三大门户,以及“引领”中国网站设计潮流的蓝色理想,ChinaUI等都是使用了p ...

  9. ASP.NET MVC中URL末尾斜杠的实现

    在网站的SEO优化中,通常都会涉及到URL结尾斜杠的问题. http://blog.sina.com.cn/s/blog_828e7ce40100srj1.html http://www.dengyo ...

  10. python jason,pickle

    参考官网 https://docs.python.org/3/library/json.html https://docs.python.org/3/library/pickle.html 了解这两个 ...