Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations
概
解耦表示学习(disentangled representations)通常假设图片有独立的几个因素决定, 即:
\]
本文对这个假设提出质疑.
主要内容
VAE 首先通过encoder 将\(x\)映射为隐变量\(z\), 再通过隐变量\(z\)恢复出\(x\), 其中赋予先验\(p(z)\)常常为标准正态分布, 并且最大化ELBO的同时要最小化:
\]
这表示我们希望所提取的隐变量\(z\)的各分量是相互独立. 形象地说, 我们改变\(z_i\)就有图片相应的元素发生改变而其它元素不变. 作者认为这种假设简单而美好, 但是在无监督的模式下, 该假设是不可能成立的.
实际上, 假设先验分布的确如此\(p(z) = \prod_{i}^d p(z_i)\), 则一定存在一个双射\(f: \mathrm{supp}(z) \rightarrow \mathrm{supp}(z)\), 是的\(\frac{\partial{f_i(z)}}{\partial z_j}\not = 0, \mathrm{a.e.}, \forall i, j\), 且\(z, f(z)\)同分布, 即
\]
又因为\(f\)是一个双射, 故
\]
进一步有
\]
故边缘分布是一致的, 这意味着, 我们除了\(p(z)\), 还有\(p(f(z))\)同样可以到处我们的观测数据\(P(x)\), 反之, 没有额外的信息(即在无监督条件下)我们无法确定所拟合的分布是\(p(z)\)还是\(p(f(z))\).
倘若是后者, 我们改变隐变量的某一个维度\(f_i\), 由于偏导数均不为0, 则几乎所有的\(z\)都改变了, 也就是真正的控制元素都会发生改变, 这和我们的解耦表示学习的初衷产生了背离. 所以结论就是在无监督条件下, 想要解耦表示是几乎不可能的.
注: 上面的\(f\)的构造不是唯一的;
注: 上面的证明用到了和顺序统计量一样的有趣的玩意.
作者做了很多很多实验, 个人觉得最能体现这一点就是, 所有这些强调解耦表示的VAE都对参数初始化和超参数选择异常敏感.
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations的更多相关文章
- 《Domain Agnostic Learning with Disentangled Representations》ICML 2019
这篇文章是ICML 2019上一篇做域适应的文章,无监督域适应研究的问题是如何把源域上训练的模型结合无lable的目标域数据使得该模型在目标域上有良好的表现.之前的研究都有个假设,就是数据来自哪个域是 ...
- 【ML】ICML2015_Unsupervised Learning of Video Representations using LSTMs
Unsupervised Learning of Video Representations using LSTMs Note here: it's a learning notes on new L ...
- 【CV】ICCV2015_Unsupervised Learning of Visual Representations using Videos
Unsupervised Learning of Visual Representations using Videos Note here: it's a learning note on Prof ...
- Unsupervised Learning and Text Mining of Emotion Terms Using R
Unsupervised learning refers to data science approaches that involve learning without a prior knowle ...
- Machine Learning Algorithms Study Notes(4)—无监督学习(unsupervised learning)
1 Unsupervised Learning 1.1 k-means clustering algorithm 1.1.1 算法思想 1.1.2 k-means的不足之处 1 ...
- Unsupervised Learning: Use Cases
Unsupervised Learning: Use Cases Contents Visualization K-Means Clustering Transfer Learning K-Neare ...
- Supervised Learning and Unsupervised Learning
Supervised Learning In supervised learning, we are given a data set and already know what our correc ...
- Unsupervised learning无监督学习
Unsupervised learning allows us to approach problems with little or no idea what our results should ...
- PredNet --- Deep Predictive coding networks for video prediction and unsupervised learning --- 论文笔记
PredNet --- Deep Predictive coding networks for video prediction and unsupervised learning ICLR 20 ...
随机推荐
- 大数据学习day28-----hive03------1. null值处理,子串,拼接,类型转换 2.行转列,列转行 3. 窗口函数(over,lead,lag等函数) 4.rank(行号函数)5. json解析函数 6.jdbc连接hive,企业级调优
1. null值处理,子串,拼接,类型转换 (1) 空字段赋值(null值处理) 当表中的某个字段为null时,比如奖金,当你要统计一个人的总工资时,字段为null的值就无法处理,这个时候就可以使用N ...
- 什么是 IP 地址 – 定义和解释
IP 地址定义 IP 地址是一个唯一地址,用于标识互联网或本地网络上的设备.IP 代表"互联网协议",它是控制通过互联网或本地网络发送的数据格式的一组规则. 本质上,IP 地址是允 ...
- Oracle—网络配置文件
Oracle网络配置文件详解 三个配置文件 listener.ora.sqlnet.ora.tnsnames.ora ,都是放在$ORACLE_HOME/network/admin目录下. 1 ...
- @Data 注解引出的 lombok
今天在看代码的时候, 看到了这个注解, 之前都没有见过, 所以就查了下, 发现还是个不错的注解, 可以让代码更加简洁. 这个注解来自于 lombok,lombok 能够减少大量的模板代码,减少了在使用 ...
- linux vi(vim)常用命令汇总(转)
前言 首先解析一个vim vi是unix/linux下极为普遍的一种文本编辑器,大部分机器上都有vi的各种变种,在不同的机器上常用不同的变种软件,其中vim比较好用也用的比较广泛.vim是Vi Imp ...
- CentOS 初体验三: Yum 安装、卸载软件
一:Yum 简介 Yum(全称为 Yellow dog Updater, Modified)是一个在Fedora和RedHat以及CentOS中的Shell前端软件包管理器.基于RPM包管理,能够从指 ...
- shell awk命令字符串拼接
本节内容:awk命令实现字符串的拼接 输入文件的内容: TMALL_INVENTORY_30_GROUP my163149.cm6 3506 5683506 mysql-bin.000013 3273 ...
- Linux单机安装Zookeeper
一.官网 https://zookeeper.apache.org/ 二.简介 Apache ZooKeeper致力于开发和维护开源服务器,实现高度可靠的分布式协调. ZooKeeper是一种集中式服 ...
- 一行配置搞定 Spring Boot项目的 log4j2 核弹漏洞!
相信昨天,很多小伙伴都因为Log4j2的史诗级漏洞忙翻了吧? 看到群里还有小伙伴说公司里还特别建了800+人的群在处理... 好在很快就有了缓解措施和解决方案.同时,log4j2官方也是速度影响发布了 ...
- 十二. Go并发编程--sync/errGroup
一.序 这一篇算是并发编程的一个补充,起因是当前有个项目,大概の 需求是,根据kafka的分区(partition)数,创建同等数量的 消费者( goroutine)从不同的分区中消费者消费数据,但是 ...