洛谷 P3431:[POI2005]AUT-The Bus(离散化+DP+树状数组)
题目描述
The streets of Byte City form a regular, chessboardlike network - they are either north-south or west-east directed. We shall call them NS- and WE-streets. Furthermore, each street crosses the whole city. Every NS-street intersects every WE- one and vice versa. The NS-streets are numbered from \(1\) to \(n\), starting from the westernmost. The WE-streets are numbered from \(1\) to \(m\), beginning with the southernmost. Each intersection of the \(i\)'th NS-street with the \(j\)'th WE-street is denoted by a pair of numbers \((i,j)\) (for \(1\le i\le n\), \(1\le j\le m\)).
There is a bus line in Byte City, with intersections serving as bus stops. The bus begins its itinerary by the \((1,1)\) intersection, and finishes by the \((n,m)\) intersection. Moreover, the bus may only travel in the eastern and/or northern direction.
There are passengers awaiting the bus by some of the intersections. The bus driver wants to choose his route in a way that allows him to take as many of them as possible. (We shall make an assumption that the interior of the bus is spacious enough to take all of the awaiting passengers, regardless of the route chosen.)TaskWrite a programme which:
reads from the standard input a description of the road network and the number of passengers waiting at each intersection,finds, how many passengers the bus can take at the most,writes the outcome to the standard output.
Byte City 的街道形成了一个标准的棋盘网络 – 他们要么是北南走向要么就是西东走向. 北南走向的路口从 1 到 n编号, 西东走向的路从1 到 m编号. 每个路口用两个数(i, j) 表示(1 <= i <= n, 1 <= j <= m). Byte City里有一条公交线, 在某一些路口设置了公交站点. 公交车从 (1, 1) 发车, 在(n, m)结束.公交车只能往北或往东走. 现在有一些乘客在某些站点等车. 公交车司机希望在路线中能接到尽量多的乘客.帮他想想怎么才能接到最多的乘客.
输入格式
The first line of the standard input contains three positive integers \(n\), \(m\) and \(k\) - denoting the number of NS-streets, the number of WE-streets and the number of intersections by which the passengers await the bus, respectively \((1\le n\le 10^9, 1\le m\le 10^9, 1\le k\le 10^5)\).
The following \(k\) lines describe the deployment of passengers awaiting the bus, a single line per intersection. In the \((i+1)\)'st line there are three positive integers \(x_i, y_i\) and \(p_i\), separated by single spaces, \(1\le x_i\le n,1\le y_i\le m,1\le p_i\le 10^6\) . A triplet of this form signifies that by the intersection\((x_i,y_i)p_i\) passengers await the bus. Each intersection is described in the input data once at the most. The total number of passengers waiting for the bus does not exceed \(1\ 000\ 000\ 000\).
输出格式
Your programme should write to the standard output one line containing a single integer - the greatest number of passengers the bus can take.
输入输出样例
输入
8 7 11
4 3 4
6 2 4
2 3 2
5 6 1
2 5 2
1 5 5
2 1 1
3 1 1
7 7 1
7 4 2
8 6 2
输出
11
思路
首先想到的是一个\(n\times m\)的DP,但是因为\(n,m\)均为\(10^9\),所以肯定是不行的
可以注意到,虽然\(n,m\)很大,但是点的个数却很少,只有\(10^5\)个,所以可以考虑将点先离散化,这样时间就从\(O(n\times m)降到了O(k^2)\),但是依旧会超时
这时,我们可以将每个点按横坐标升序,如果横坐标相同,纵坐标升序的顺序排序,然后进行DP
状态转移方程:\(dp[i]=max(dp[1],dp[2]...dp[i])+p[i]\)对于\(max(dp[i])\),可以用树状数组来求
代码
#include <bits/stdc++.h>
#define ll long long
#define ull unsigned long long
#define ms(a,b) memset(a,b,sizeof(a))
const int inf=0x3f3f3f3f;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int maxn=2e6+10;
const int mod=1e9+7;
const int maxm=1e3+10;
using namespace std;
struct wzy
{
int x,y,s;
}p[maxn];
int c[maxn];
int mapx[maxn],mapy[maxn];
bool cmp(wzy u,wzy v)
{
if(u.x==v.x)
return u.y<v.y;
return u.x<v.x;
}
int lowbit(int x)
{
return x&(-x);
}
void update(int place,int num,int n)
{
while(place<=n)
{
c[place]=max(c[place],num);
place+=lowbit(place);
}
}
int query(int place)
{
int ans=0;
while(place>0)
{
ans=max(ans,c[place]);
place-=lowbit(place);
}
return ans;
}
int dp[maxn];
int main(int argc, char const *argv[])
{
#ifndef ONLINE_JUDGE
freopen("/home/wzy/in.txt", "r", stdin);
freopen("/home/wzy/out.txt", "w", stdout);
srand((unsigned int)time(NULL));
#endif
ios::sync_with_stdio(false);
cin.tie(0);
int n,m,k;
cin>>n>>m>>k;
for(int i=1;i<=k;i++)
{
cin>>p[i].x>>p[i].y>>p[i].s;
mapx[i]=p[i].x;
mapy[i]=p[i].y;
}
// 离散化
sort(mapx+1,mapx+1+k);
sort(mapy+1,mapy+1+k);
int numx,numy;
numx=numy=k;
numx=unique(mapx+1,mapx+1+numx)-(mapx+1);
numy=unique(mapy+1,mapy+1+numy)-(mapy+1);
for(int i=1;i<=k;i++)
{
p[i].x=lower_bound(mapx+1,mapx+numx+1,p[i].x)-mapx;
p[i].y=lower_bound(mapy+1,mapy+numy+1,p[i].y)-mapy;
}
sort(p+1,p+1+k,cmp);
for(int i=1;i<=k;i++)
{
dp[i]=query(p[i].y)+p[i].s;
update(p[i].y,dp[i],k);
}
int ans=0;
for(int i=1;i<=k;i++)
ans=max(ans,dp[i]);
cout<<ans<<endl;
#ifndef ONLINE_JUDGE
cerr<<"Time elapsed: "<<1.0*clock()/CLOCKS_PER_SEC<<" s."<<endl;
#endif
return 0;
}
洛谷 P3431:[POI2005]AUT-The Bus(离散化+DP+树状数组)的更多相关文章
- Codeforces 777E(离散化+dp+树状数组或线段树维护最大值)
E. Hanoi Factory time limit per test 1 second memory limit per test 256 megabytes input standard inp ...
- 洛谷 P1975 [国家集训队]排队 Lebal:块内排序+树状数组
题目描述 排排坐,吃果果,生果甜嗦嗦,大家笑呵呵.你一个,我一个,大的分给你,小的留给我,吃完果果唱支歌,大家乐和和. 红星幼儿园的小朋友们排起了长长地队伍,准备吃果果.不过因为小朋友们的身高有所区别 ...
- 洛谷 P2038 无线网络发射器选址 —— 二维树状数组
题目:https://www.luogu.org/problemnew/show/P2038 大水题暴露出我的愚蠢. 用二维树状数组,然而居然忘了它应该那样写,调了一个小时: 正方形可以超出外面,只要 ...
- 洛谷 P1972"[SDOI2009]HH的项链"(离线+树状数组 or 在线+主席树)
传送门 •题意 给你一个包含 n 个数的数组 $a$: 有 m 此操作,每次操作求区间 [l,r] 中不同数的个数: •题解(离线+树状数组) 以样例 $[1,2,3,4,3,5]$ 为例,求解区间 ...
- cf 61 E. Enemy is weak 离散化+树状数组
题意: 给出一个数组,数组的每一个元素都是不一样的,求出对于3个数组下标 i, j, k such that i < j < k and ai > aj > ak where ...
- POJ 2299 Ultra-QuickSort (离散化)+【树状数组】
<题目链接> 题目大意: 给你一段序列,问你如果每次只交换该序列相邻的两个元素,最少需要交换多少步才能够使该序列变为升序排列. 解题分析: 不难发现,其实本题就是让我们求原始序列的逆序对, ...
- POJ 2299 Ultra-QuickSort 离散化加树状数组求逆序对
http://poj.org/problem?id=2299 题意:求逆序对 题解:用树状数组.每读入一个数x,另a[x]=1.那么a数列的前缀和s[x]即为x前面(或者说,再x之前读入)小于x的个数 ...
- CodeForces - 220B Little Elephant and Array (莫队+离散化 / 离线树状数组)
题意:N个数,M个查询,求[Li,Ri]区间内出现次数等于其数值大小的数的个数. 分析:用莫队处理离线问题是一种解决方案.但ai的范围可达到1e9,所以需要离散化预处理.每次区间向外扩的更新的过程中, ...
- codeforces 652D D. Nested Segments(离散化+sort+树状数组)
题目链接: D. Nested Segments time limit per test 2 seconds memory limit per test 256 megabytes input sta ...
随机推荐
- Vue框架,computed和watch的区别
computed和watch定义 1.computed是计算属性,类似于过滤器,对绑定到视图的数据进行处理.官网的例子: <div id="example"> < ...
- Java打jar包详解
Java打jar包详解 一.Java打jar包的几种方式https://www.cnblogs.com/mq0036/p/8566427.html 二.MANIFEST.MF文件详解https://w ...
- redis入门到精通系列(六):redis的事务详解
(一)事务的概念 谈到数据库的高级应用,不可避免会谈到事务.熟悉mysql的朋友们对事务肯定不陌生,简单来讲事务就是控制一个数据库操作序列要么全部执行要么全部不执行.今天我们就来了解redis中的事务 ...
- springboot中如何向redis缓存中存入数据
package com.hope;import com.fasterxml.jackson.core.JsonProcessingException;import com.fasterxml.jack ...
- sftp 上传下载 命令介绍
sftp是Secure FileTransferProtocol的缩写,安全文件传送协议.可以为传输文件提供一种安全的加密方法. sftp与 ftp有着几乎一样的语法和功能.SFTP为 SSH的一部分 ...
- Next_day()函数的用法
一.定义 NEXT_DAY(date,char) date参数为日期型, char:为1~7或Monday/Mon~Sunday/ 指定时间的下一个星期几(由char指定)所在的日期, c ...
- jstl中的choose标签
<%@ page contentType="text/html;charset=UTF-8" language="java" %><%@ ta ...
- 【力扣】82. 删除排序链表中的重复元素 II
存在一个按升序排列的链表,给你这个链表的头节点 head ,请你删除链表中所有存在数字重复情况的节点,只保留原始链表中 没有重复出现 的数字. 返回同样按升序排列的结果链表. 示例 1: 输入:hea ...
- 【C/C++】最大连续子序列和/动态规划
思路主要是看了晴神的算法笔记,实现是自己重新用vector实现了一下,对付逗号隔开的输入 #include <iostream> #include <string> #incl ...
- Go语言核心36讲(Go语言实战与应用二十五)--学习笔记
47 | 基于HTTP协议的网络服务 我们在上一篇文章中简单地讨论了网络编程和 socket,并由此提及了 Go 语言标准库中的syscall代码包和net代码包. 我还重点讲述了net.Dial函数 ...