Codeforces Round #747 (Div. 2) Editorial
Codeforces Round #747 (Div. 2)
A. Consecutive Sum Riddle
思路分析:
- 一开始想起了那个公式\(l + (l + 1) + … + (r − 1) + r = (l + r)(r - l + 1) / 2\)。
- 然后一看令\(l + r = 1\)最合适,那么就有\(l = r - 1\),一代入就得到\(r = n, l = -n + 1\)。
- 没想通为什么没有一眼看出来。
代码
#include <bits/stdc++.h>
#define ll long long
using namespace std;
int main()
{
int t;
cin >> t;
while (t--)
{
ll n;
cin >> n;
cout << -n + 1 << ' ' << n << endl;
}
return 0;
}
B. Special Numbers
思路分析
- 这题也是想久了,其实列一下规律一下就出来了(当然不排除大佬一眼看出来。
- 我们列一下前几项吧。
- \(k = 1,2,3,4,5\),我们分别选的是\(n ^ 0\),\(n ^ 1\),\(n ^ 0 + n ^ 1\),\(n ^ 2\),\(n ^ 0 + n ^ 2\)。
- 然后我们就可以得出一个规律,那就是我们把\(k\)变成二进制,如果当前二进制位为\(1\)的话我们就加上\(n ^ x\),\(x\)是指该二进制位是第几位,然后注意longlong 和 取模即可。
代码
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const ll mod = 1e9 + 7;
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
int t;
cin >> t;
while (t--)
{
ll n, k;
cin >> n >> k;
ll ans = 0;
ll p = 1;
for (int j = 0; j <= 31; j++)
{
if (k & (1 << j))
{
ans = (ans + p) % mod;
}
p *= n;
p %= mod;
}
cout << ans << endl;
}
return 0;
}
C. Make Them Equal
思路分析
- 这题也挺简单的,很容易想到最多需要两次操作,因为\(1 <= x <= n\),所以我们只要选\(n - 1\)和 \(n\)必然能完成任务,因为选\(n\)就把除\(n\)这个位置以外的位置全部弄好了,然后就是\(n-1\)必然不会被\(n\)整除。
- 所以我们就要思考一下只要一次操作和0次操作的情况。
- 看下题目要求的时间,试试暴力(乌鱼子,我还想是不是质因数分解然后拿最小的质因数和\(n\)比大小,不知道有同学这样试了没)。
- 暴力的时候注意一下,\(o(n^2)\)是过不了这题的,所以我们以\(x\)为第一层循环,这样能优化时间。因为这样的话我们下标就不用一个一个遍历,只需要加上\(x\)即可。
代码
#include <bits/stdc++.h>
#define ll long long
using namespace std;
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
int t;
cin >> t;
while (t--)
{
vector<int> ans;
bool ok = true;
int n;
cin >> n;
char ch;
cin >> ch;
string s;
cin >> s;
for (int i = 0; i < s.size(); i++)
{
if (s[i] != ch)
{
ok = false;
}
}
if (!ok)
{
for (int i = 1; i <= n; i++)
{
ok = true;
for (int j = i; j <= n; j++)
{
ok &= (s[j - 1] == ch);
j += i - 1;
}
if (ok)
{
ans.push_back(i);
break;
}
}
}
if (!ok)
{
ans.push_back(n);
ans.push_back(n - 1);
}
cout << ans.size() << endl;
for (int x : ans)
{
cout << x << ' ';
}
cout << endl;
}
return 0;
}
D. The Number of Imposters
思路分析
- 我们可以把\(imposter\)表示为相反关系,即如果我认为他说的是假话,那么如果我说的是真的,他就是假的,我如果是假的,他就是真的,\(crewmate\)刚好相反。
- 我们考虑用带权并查集解决这个问题,我们维护几个根节点,因为题目所给的点必定能形成几颗树。
- 我们共要维护两个值,一个是与根节点相同关系的节点个数,一个是与根节点相反关系的节点的个数。
- 这样的话答案就是对于每一个根节点,取两种类型中最大的值。
- 那么我们如何来维护这个个数或者说如何构造出这两种节点呢?
- 首先,我们维护一种关系,1表示相反,0表示相同。那么这个点与根节点相同和相反就和中间点的过程有关了。具体看代码。
代码
#include <bits/stdc++.h>
using namespace std;
const int maxn = 2e5 + 10;
int p[maxn], dis[maxn];
int cnt[maxn][2];
int find(int x)
{
if (x != p[x])
{
int root = find(p[x]);
dis[x] ^= dis[p[x]];
//dis[p[x]],所以其实就是判断x和它的根节点是否关系相同
p[x] = root;
}
return p[x];
//找到父节点并更新dis
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
int t;
cin >> t;
while (t--)
{
int n, m;
cin >> n >> m;
for (int i = 1; i <= n; i++)
{
p[i] = i;
dis[i] = 0;
cnt[i][0] = 1;
cnt[i][1] = 0;
//重置
}
bool flag = 1;
for (int i = 1; i <= m; i++)
{
int u, v;
string s;
cin >> u >> v >> s;
bool val = s[0] == 'i' ? 1 : 0;
//当前两个点的关系
int fu = find(u), fv = find(v);
if (fu == fv)
{
if ((dis[u] ^ dis[v]) != val)
{
flag = 0;
}
//如果两个点已经在同一棵子树了,如果这两个点与根节点的关系异或出来不是输入的关系时矛盾
}
else
{
p[fv] = fu;
dis[fv] = dis[u] ^ dis[v] ^ val;
//把这两个点的父节点连起来,那么父节点的关系应该变成这个个节点异或起来再和当前关系异或即可
cnt[fu][1] += cnt[fv][dis[fv] ^ 1];
//1表示与根节点相反
cnt[fu][0] += cnt[fv][dis[fv]];
//0表示与根节点相同
}
}
if (!flag)
{
cout << -1 << endl;
}
else
{
int ans = 0;
for (int i = 1; i <= n; i++)
{
if (find(i) == i)
{
ans += max(cnt[i][0], cnt[i][1]);
}
}
cout << ans << endl;
}
}
return 0;
}
E1. Rubik's Cube Coloring (easy version)
思路分析
- 这题太水了吧,直接第一个节点能选六个,其他节点只能选四种颜色,所以答案就是\(6\times4^{2^k - 2}\)。
代码
#include <bits/stdc++.h>
using namespace std;
#define ll long long
const ll mod = 1e9 + 7;
ll qpow(ll a, ll b)
{
ll ans = 1;
while (b)
{
if (b & 1)
ans = ans * a % mod;
a = a * a % mod;
b >>= 1;
}
return ans;
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
int k;
cin >> k;
ll ans = qpow(4, (1ll << k) - 2) % mod * 6 % mod;
cout << ans << endl;
return 0;
}
Codeforces Round #747 (Div. 2) Editorial的更多相关文章
- Codeforces Round #590 (Div. 3) Editorial
Codeforces Round #590 (Div. 3) Editorial 题目链接 官方题解 不要因为走得太远,就忘记为什么出发! Problem A 题目大意:商店有n件商品,每件商品有不同 ...
- Codeforces Round #544 (Div. 3) Editorial C. Balanced Team
http://codeforces.com/contest/1133/problem/Ctime limit per test 2 secondsmemory limit per test 256 m ...
- Codeforces Round #710 (Div. 3) Editorial 1506A - Strange Table
题目链接 https://codeforces.com/contest/1506/problem/A 原题 1506A - Strange Table Example input 5 1 1 1 2 ...
- Codeforces Round #453 ( Div. 2) Editorial ABCD
A. Visiting a Friend time limit per test 1 second memory limit per test 256 megabytes input standard ...
- Codeforces Round #448(Div.2) Editorial ABC
被B的0的情况从头卡到尾.导致没看C,心情炸裂又掉分了. A. Pizza Separation time limit per test 1 second memory limit per test ...
- Codeforces Round #747 (Div. 2)
比赛地址 A(水题) 题目链接 题目: 给出指定\(n\),求解出一段区间\([l,r]\)使得\(\sum\limits_{i=l}^ri=n\) 解析: 从点0,1两点作为起点分别向左右延伸长度, ...
- Codeforces Round #747 (Div. 2)题解
谢天谢地,还好没掉分,还加了8分,(8分再小也是加啊)前期刚开始有点卡,不过在尽力的调整状态之后,还是顺利的将前面的水题过完了,剩下的E2和F题就过不去了,估计是能力问题,自己还是得认真补题啦. E2 ...
- Codeforces Round #713 (Div. 3)AB题
Codeforces Round #713 (Div. 3) Editorial 记录一下自己写的前二题本人比较菜 A. Spy Detected! You are given an array a ...
- Codeforces Round #366 (Div. 2) ABC
Codeforces Round #366 (Div. 2) A I hate that I love that I hate it水题 #I hate that I love that I hate ...
随机推荐
- [第十五篇]——Swarm 集群管理之Spring Cloud直播商城 b2b2c电子商务技术总结
Swarm 集群管理 简介 Docker Swarm 是 Docker 的集群管理工具.它将 Docker 主机池转变为单个虚拟 Docker 主机. Docker Swarm 提供了标准的 Dock ...
- go命令帮助
Go is a tool for managing Go source code. go-->管理go源码的工具-->管理工具,包含很多功能命令 Usage: go <command ...
- PTA——c++面向对象基础
1.结构不是面向对象的主要特征 2.每个 C++程序中都必须包含有这样一个函数,该函数的函数名为main 3.C++对C语言作了很多改进,下列描述中()使得C语言发生了质变,从面向过程变成了面向对象. ...
- 有备无患「GitHub 热点速览 v.21.38」
作者:HelloGitHub-小鱼干 数据库最重要的一个功能是容灾备份,备份不只是对数据库重要,对日常工作生活的我们一样重要,比如花了一个工作日写的代码没有备份(虽然可能只有 1 行-)总归是一个让人 ...
- CPU到底是什么东西?它为什么能够执行数学运算?
CPU到底是什么东西?它为什么能够执行数学运算? 本文地址http://yangjianyong.cn/?p=20转载无需经过作者本人授权 简单的物理电路 先来看一张初中学过的物理电路图: 从图中我们 ...
- 动态查看及加载PHP扩展
在编译并完成 php.ini 的配置之后,我们就成功的安装了一个 PHP 的扩展.不过, PHP 也为我们提供了两个在动态运行期间可以查看扩展状态以及加载未在 php.ini 中进行配置的扩展的函数. ...
- xml字符串转成数组(php)
1 $str = '<xml> 2 <ToUserName> <![CDATA[gh_fc0a06a20993]]> </ToUserName> 3 & ...
- JDBC-1(概述&建立)
基于宋红康老师所讲JDBC所作笔记 1.JDBC概述 1.1 数据持久化 持久化:将数据保持到可掉电式存储设备中以供之后使用. 数据持久化意味着将内存中的数据保存到硬盘上加以固化,实现过程大多通过各种 ...
- javascript 关闭当前页面
1. 不带任何提示关闭窗口的js代码 <a href="javascript:window.opener=null;window.open('','_self');window.clo ...
- centos7.X 系统初始化>>优化
1 修改网卡为eth0 cd /etc/sysconfig/network-scripts/ vim ifcfg-eno16777729TYPE=EthernetBOOTPROTO=staticIPA ...