Codeforces Round #747 (Div. 2) Editorial
Codeforces Round #747 (Div. 2)
A. Consecutive Sum Riddle
思路分析:
- 一开始想起了那个公式\(l + (l + 1) + … + (r − 1) + r = (l + r)(r - l + 1) / 2\)。
- 然后一看令\(l + r = 1\)最合适,那么就有\(l = r - 1\),一代入就得到\(r = n, l = -n + 1\)。
- 没想通为什么没有一眼看出来。
代码
#include <bits/stdc++.h>
#define ll long long
using namespace std;
int main()
{
int t;
cin >> t;
while (t--)
{
ll n;
cin >> n;
cout << -n + 1 << ' ' << n << endl;
}
return 0;
}
B. Special Numbers
思路分析
- 这题也是想久了,其实列一下规律一下就出来了(当然不排除大佬一眼看出来。
- 我们列一下前几项吧。
- \(k = 1,2,3,4,5\),我们分别选的是\(n ^ 0\),\(n ^ 1\),\(n ^ 0 + n ^ 1\),\(n ^ 2\),\(n ^ 0 + n ^ 2\)。
- 然后我们就可以得出一个规律,那就是我们把\(k\)变成二进制,如果当前二进制位为\(1\)的话我们就加上\(n ^ x\),\(x\)是指该二进制位是第几位,然后注意longlong 和 取模即可。
代码
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const ll mod = 1e9 + 7;
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
int t;
cin >> t;
while (t--)
{
ll n, k;
cin >> n >> k;
ll ans = 0;
ll p = 1;
for (int j = 0; j <= 31; j++)
{
if (k & (1 << j))
{
ans = (ans + p) % mod;
}
p *= n;
p %= mod;
}
cout << ans << endl;
}
return 0;
}
C. Make Them Equal
思路分析
- 这题也挺简单的,很容易想到最多需要两次操作,因为\(1 <= x <= n\),所以我们只要选\(n - 1\)和 \(n\)必然能完成任务,因为选\(n\)就把除\(n\)这个位置以外的位置全部弄好了,然后就是\(n-1\)必然不会被\(n\)整除。
- 所以我们就要思考一下只要一次操作和0次操作的情况。
- 看下题目要求的时间,试试暴力(乌鱼子,我还想是不是质因数分解然后拿最小的质因数和\(n\)比大小,不知道有同学这样试了没)。
- 暴力的时候注意一下,\(o(n^2)\)是过不了这题的,所以我们以\(x\)为第一层循环,这样能优化时间。因为这样的话我们下标就不用一个一个遍历,只需要加上\(x\)即可。
代码
#include <bits/stdc++.h>
#define ll long long
using namespace std;
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
int t;
cin >> t;
while (t--)
{
vector<int> ans;
bool ok = true;
int n;
cin >> n;
char ch;
cin >> ch;
string s;
cin >> s;
for (int i = 0; i < s.size(); i++)
{
if (s[i] != ch)
{
ok = false;
}
}
if (!ok)
{
for (int i = 1; i <= n; i++)
{
ok = true;
for (int j = i; j <= n; j++)
{
ok &= (s[j - 1] == ch);
j += i - 1;
}
if (ok)
{
ans.push_back(i);
break;
}
}
}
if (!ok)
{
ans.push_back(n);
ans.push_back(n - 1);
}
cout << ans.size() << endl;
for (int x : ans)
{
cout << x << ' ';
}
cout << endl;
}
return 0;
}
D. The Number of Imposters
思路分析
- 我们可以把\(imposter\)表示为相反关系,即如果我认为他说的是假话,那么如果我说的是真的,他就是假的,我如果是假的,他就是真的,\(crewmate\)刚好相反。
- 我们考虑用带权并查集解决这个问题,我们维护几个根节点,因为题目所给的点必定能形成几颗树。
- 我们共要维护两个值,一个是与根节点相同关系的节点个数,一个是与根节点相反关系的节点的个数。
- 这样的话答案就是对于每一个根节点,取两种类型中最大的值。
- 那么我们如何来维护这个个数或者说如何构造出这两种节点呢?
- 首先,我们维护一种关系,1表示相反,0表示相同。那么这个点与根节点相同和相反就和中间点的过程有关了。具体看代码。
代码
#include <bits/stdc++.h>
using namespace std;
const int maxn = 2e5 + 10;
int p[maxn], dis[maxn];
int cnt[maxn][2];
int find(int x)
{
if (x != p[x])
{
int root = find(p[x]);
dis[x] ^= dis[p[x]];
//dis[p[x]],所以其实就是判断x和它的根节点是否关系相同
p[x] = root;
}
return p[x];
//找到父节点并更新dis
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
int t;
cin >> t;
while (t--)
{
int n, m;
cin >> n >> m;
for (int i = 1; i <= n; i++)
{
p[i] = i;
dis[i] = 0;
cnt[i][0] = 1;
cnt[i][1] = 0;
//重置
}
bool flag = 1;
for (int i = 1; i <= m; i++)
{
int u, v;
string s;
cin >> u >> v >> s;
bool val = s[0] == 'i' ? 1 : 0;
//当前两个点的关系
int fu = find(u), fv = find(v);
if (fu == fv)
{
if ((dis[u] ^ dis[v]) != val)
{
flag = 0;
}
//如果两个点已经在同一棵子树了,如果这两个点与根节点的关系异或出来不是输入的关系时矛盾
}
else
{
p[fv] = fu;
dis[fv] = dis[u] ^ dis[v] ^ val;
//把这两个点的父节点连起来,那么父节点的关系应该变成这个个节点异或起来再和当前关系异或即可
cnt[fu][1] += cnt[fv][dis[fv] ^ 1];
//1表示与根节点相反
cnt[fu][0] += cnt[fv][dis[fv]];
//0表示与根节点相同
}
}
if (!flag)
{
cout << -1 << endl;
}
else
{
int ans = 0;
for (int i = 1; i <= n; i++)
{
if (find(i) == i)
{
ans += max(cnt[i][0], cnt[i][1]);
}
}
cout << ans << endl;
}
}
return 0;
}
E1. Rubik's Cube Coloring (easy version)
思路分析
- 这题太水了吧,直接第一个节点能选六个,其他节点只能选四种颜色,所以答案就是\(6\times4^{2^k - 2}\)。
代码
#include <bits/stdc++.h>
using namespace std;
#define ll long long
const ll mod = 1e9 + 7;
ll qpow(ll a, ll b)
{
ll ans = 1;
while (b)
{
if (b & 1)
ans = ans * a % mod;
a = a * a % mod;
b >>= 1;
}
return ans;
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
int k;
cin >> k;
ll ans = qpow(4, (1ll << k) - 2) % mod * 6 % mod;
cout << ans << endl;
return 0;
}
Codeforces Round #747 (Div. 2) Editorial的更多相关文章
- Codeforces Round #590 (Div. 3) Editorial
Codeforces Round #590 (Div. 3) Editorial 题目链接 官方题解 不要因为走得太远,就忘记为什么出发! Problem A 题目大意:商店有n件商品,每件商品有不同 ...
- Codeforces Round #544 (Div. 3) Editorial C. Balanced Team
http://codeforces.com/contest/1133/problem/Ctime limit per test 2 secondsmemory limit per test 256 m ...
- Codeforces Round #710 (Div. 3) Editorial 1506A - Strange Table
题目链接 https://codeforces.com/contest/1506/problem/A 原题 1506A - Strange Table Example input 5 1 1 1 2 ...
- Codeforces Round #453 ( Div. 2) Editorial ABCD
A. Visiting a Friend time limit per test 1 second memory limit per test 256 megabytes input standard ...
- Codeforces Round #448(Div.2) Editorial ABC
被B的0的情况从头卡到尾.导致没看C,心情炸裂又掉分了. A. Pizza Separation time limit per test 1 second memory limit per test ...
- Codeforces Round #747 (Div. 2)
比赛地址 A(水题) 题目链接 题目: 给出指定\(n\),求解出一段区间\([l,r]\)使得\(\sum\limits_{i=l}^ri=n\) 解析: 从点0,1两点作为起点分别向左右延伸长度, ...
- Codeforces Round #747 (Div. 2)题解
谢天谢地,还好没掉分,还加了8分,(8分再小也是加啊)前期刚开始有点卡,不过在尽力的调整状态之后,还是顺利的将前面的水题过完了,剩下的E2和F题就过不去了,估计是能力问题,自己还是得认真补题啦. E2 ...
- Codeforces Round #713 (Div. 3)AB题
Codeforces Round #713 (Div. 3) Editorial 记录一下自己写的前二题本人比较菜 A. Spy Detected! You are given an array a ...
- Codeforces Round #366 (Div. 2) ABC
Codeforces Round #366 (Div. 2) A I hate that I love that I hate it水题 #I hate that I love that I hate ...
随机推荐
- noip模拟45
A. 打表 首先注意这道题数组下标从 \(0\) 开始 可以找规律发现是 \(\displaystyle\frac{\sum |a_i-a _ {ans}|}{2^k}\) 那么严谨证明一下: 由于两 ...
- WEB安全性测试之文件上传漏洞
1.漏洞描述:文件上传漏洞,是指可以利用WEB上传一些特定的文件包含特定代码如(<?php phpnfo;?> 可以用于读取服务器配置信息.上传成功后可以点击) 上传漏洞是指用户上传了一个 ...
- 转:C#根据条件设置datagridview行的颜色
1 private void LoadData() 2 { 3 DataTable tblDatas = new DataTable(); 4 tblDatas.Columns.Add("I ...
- JS011. 身份证号码校验(仅34行)
身份证格式 六位数字地址码 + 八位数字出生日期码 + 三位数字顺序码 + 一位数字校验码 checkIdCard.js checkIdCard: function (idCard){ //15位和1 ...
- 现在互联网好多bug 想到都烦
我接触计算机十多年了,只是在15年前发布一篇给计算机有关的技术文章,后来就在也不发表了,今天在163博客写个备录,,写到一半结果误 关了,,浪费了好几个小时,还以为像以前那样,又要重写,,这也是我不爱 ...
- gitlab安装CI问题汇总
0.设置gitlab获取代码的存放位置 vim /etc/gitlab-runner/config.toml 1.unable to access http://gitlab-ci-token:xxx ...
- NOIP模拟57
前言 一整套都是水题(尽管 T4 稍有难度.. 从各位的分数上就可以看出来..Max 的 T1 打挂了,不然就有人 AK 了.. 感觉还好,最后还有 1h 看了看 T4 ,感觉有一点思路,就瞎 jb ...
- PHP中的MySQLi扩展学习(三)mysqli的基本操作
我们继续 MySQLi 扩展的学习,上篇文章中提到过,MySQLi 的扩展相对于 PDO 来说功能更加的丰富,所以我们依然还会在学习过程中穿插各种 MySQLi 中好玩的方法函数.不过,今天的主角是 ...
- DEDE整合套件实现本地多个网站随意切换的开发环境
一.修改WEB全局配置: 在Listen 80 后面添加自己的端口号. 例如,2020是我的端口 Listen 2020 二.修改WEB站点配置: a---在NameVirtualHost *:80后 ...
- 深入HTML5第三天
表单form属性:method="get|post" action="url": 特性:不写样式是没有样式的 input:属性:type="text| ...