Content

给定正整数 \(k\),找到所有的正整数 \(x \geqslant y\),使得 \(\frac{1}{k}=\frac{1}{x}+\frac{1}{y}\)。

数据范围:\(0<k\leqslant 10^4\)。

Solution

我们考虑直接暴力枚举,那么如何枚举?又如何确定枚举的上界与下界?

由于题目中给出的要求 \(x\geqslant y\),因此我们可以考虑枚举 \(y\),然后显然要使得 \(y>k\),因此我们枚举的下界就是 \(k+1\),那么枚举的上界是什么呢?显然是在 \(x=y\) 的时候就不能够再去枚举了,因为如果 \(y\) 再向后枚举的话就不能够保证 \(x\geqslant y\)。而又由于在这个时候 \(\frac{1}{k}=\frac{1}{x}+\frac{1}{y}\),因此 \(y\) 此时就是 \(2k\)。因此我们枚举的范围就是 \([k+1,2k]\)。我们发现这么枚举是 \(\mathcal O(k)\) 的,再看数据范围,显然 \(10^4\) 的复杂度不会爆炸,因此就可以通过这么愉快的枚举通过此题了。

Code

int n;

ii gcd(int a, int b) {return !b ? a : gcd(b, a % b);}

int main() {
while(scanf("%d", &n) == 1) {
vector<pii> ans;
F(int, i, n + 1, n * 2) {
int fm = i * n, fz = n - i;
int gg = gcd(fm, fz);
fm /= gg, fz /= gg;
if(fz == 1) ans.push_back(make_pair(-fm, i)); //第一项一定要先去相反数再放入 pair!!!因为这是 pair 的特性
}
println((int)ans.size());
F(int, i, 0, (int)ans.size() - 1) printf("1/%d = 1/%d + 1/%d\n", n, ans[i].fi, ans[i].se);
}
}

UVA10976 分数拆分 Fractions Again?! 题解的更多相关文章

  1. 洛谷P1458 顺序的分数 Ordered Fractions

    P1458 顺序的分数 Ordered Fractions 151通过 203提交 题目提供者该用户不存在 标签USACO 难度普及- 提交  讨论  题解 最新讨论 暂时没有讨论 题目描述 输入一个 ...

  2. NYOJ 66 分数拆分

    分数拆分 时间限制:3000 ms  |  内存限制:65535 KB 难度:1   描述 现在输入一个正整数k,找到所有的正整数x>=y,使得1/k=1/x+1/y.   输入 第一行输入一个 ...

  3. 洛谷——P1458 顺序的分数 Ordered Fractions

    P1458 顺序的分数 Ordered Fractions 题目描述 输入一个自然数N,对于一个最简分数a/b(分子和分母互质的分数),满足1<=b<=N,0<=a/b<=1, ...

  4. nyoj_66_分数拆分_201312012122

    分数拆分 时间限制:3000 ms  |           内存限制:65535 KB 难度:1   描述 现在输入一个正整数k,找到所有的正整数x>=y,使得1/k=1/x+1/y.   输 ...

  5. 洛谷 P1458 顺序的分数 Ordered Fractions

    P1458 顺序的分数 Ordered Fractions 题目描述 输入一个自然数N,对于一个最简分数a/b(分子和分母互质的分数),满足1<=b<=N,0<=a/b<=1, ...

  6. 分数拆分(Fractions Again?!, UVa 10976)

    题目链接:https://vjudge.net/problem/UVA-10976 It is easy to see that for every fraction in the form 1k(k ...

  7. 7_3 分数拆分(UVa10976)<缩小枚举范围>

    每一个(k>0)这种形式的分数我们总是可以找到2个正整数x和y(x >= y),使得:现在我们的问题是:给你k,请你写一个程序找出所有的x和y.Input输入含有多组测试数据(不会超过10 ...

  8. 分数拆分( Fractions Again, UVA 10976)-ACM

    It is easy to see that for every fraction in the form  (k > 0), we can always find two positive i ...

  9. P1458 顺序的分数 Ordered Fractions(有技巧的枚举)+C++类封装=精简代码

    题目描述 输入一个自然数N,对于一个最简分数a/b(分子和分母互质的分数),满足1<=b<=N,0<=a/b<=1,请找出所有满足条件的分数. 这有一个例子,当N=5时,所有解 ...

随机推荐

  1. ES6学习 第二章 变量的解构赋值

    前言 该篇笔记是第二篇 变量的解构赋值. 这一章原文链接: 变量的解构赋值 解构赋值 ES6 允许按照一定模式,从数组和对象中提取值,对变量进行赋值,这被称为解构(Destructuring). 解构 ...

  2. 快上车丨直播课“Hello ArkansasUI:初识Slider组件(eTS语言)”来啦!

    11月24日19:00-20:30,Hello HarmonyOS系列课程第二期线上直播,将手把手教你使用最新的ArkUI进行开发,学习eTS语言.Slider组件和Image组件.完成本期直播课的学 ...

  3. SpringBoot集成邮件发送

    一:简述 在日常中的工作中难免会遇到程序集成邮件发送功能.接收功能:此篇文章我将使用SpringBoot集成邮件发送功能和接收功能:若对邮件一些基本协议和发送流程不懂的请务必参考我之前写的博客或者浏览 ...

  4. [Codeforces Global Round 14]

    打挺差的. 不过\(C,D\)一眼秒了,大概是对这几个月努力的一个结果? \(B\)玄学错误挂了两发. 脑子痛然后打到一半就去睡觉了. -------------------------------- ...

  5. HDU 3267 Graph Game(博弈论+图论+暴力)

    题面传送门 题意: 有一棵 \(n\) 个节点的图 \(G\),R 和 B 两个人轮流操作,R 先操作. 每次操作 R 可以染红任意一条未染色的边,B 可以染蓝任意一条未染色的边 R 的目标是染成一棵 ...

  6. Codeforces 1264D - Beautiful Bracket Sequence(组合数学)

    Codeforces 题面传送门 & 洛谷题面传送门 首先对于这样的题目,我们应先考虑如何计算一个括号序列 \(s\) 的权值.一件非常显然的事情是,在深度最深的.是原括号序列的子序列的括号序 ...

  7. pcm.x代码分析

    简介 运行说明 pcm 监控结果可以分为核心.socket 和系统三部分.在核心监控部分,结果包括如下内容: • EXEC • IPC:每 CPU 周期指令数 • FREQ:普通CPU频率系数 • A ...

  8. os.path.join()函数

    连接两个或更多的路径名组件 import os p1 = '/date' p2 = 'mage' p3 = 'img' all = os.path.join(p1,p2,p3) print(all) ...

  9. vector初始化的几种方式-STL

     vector<int>::iterator int_ite;  vector<string>::iterator string_ite;  //vector<T> ...

  10. kubernetes部署haproxy、keepalived为kube-apiserver做集群

    也可以用nginx.keepalived做负载均衡,看大家的需求. # yum -y install haproxy keepalived haproxy的配置文件(三台一样): cat > / ...