bzoj4036 / P3175 [HAOI2015]按位或
bzoj4036 / P3175 [HAOI2015]按位或
是一个 min-max容斥 的板子题。
min-max容斥 式子:
$ \displaystyle max(S) = \sum_{T\sube S} (-1)^{|T|+1} min(T) $
并且很优秀的是,它在期望情况下成立!
这个有什么关系呢。。
如果每一位分开考虑,如果第 $ i $ 位变成 1 的期望时间是 $ T(i) $
那么求的是 $ E(max(T_{1\dots n})) $
这个可以 min-max容斥
求 $ min $ 的就是某一个子集让其中某一个变成 1 的期望次数。
考虑一次选择可以让这个子集的某一个变成 1 的概率,就是 1 - 这个子集所有位都是 0 的数字的概率的和,可以考虑令 $ S $ 是除了子集的位是0其他都是1的数(集合),概率就是 $ 1 - \sum_{A[i] \sube S} p_i $ 每次选择是等价的,所以期望就是 $ \frac{1}{p} $
然后minmax容斥式子种 $ |T| $ 其实就是 $ S $ 中 0 的个数,就是n - popcount
这个的计算其实就是半个 或卷积
复杂度 $ O(n2^n) $
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<map>
using namespace std;
#define MAXN ( 1 << 21 ) + 6
int n;
double p[MAXN];
inline void FWT(double a[], int len) {
for (int mid = 2; mid <= len; mid <<= 1)
for (int i = 0; i < len; i += mid)
for (int j = i; j < i + (mid >> 1); j++)
a[j + (mid >> 1)] += a[j];
}
int main() {
cin >> n;
for( int i = 0 ; i < ( 1 << n ) ; ++ i ) scanf("%lf",&p[i]);
FWT( p , ( 1 << n ) );
double ans = 0.0;
for( int i = 0 ; i < ( 1 << n ) - 1; ++ i ) {
ans += ( ( n - __builtin_popcount( i ) & 1 ) ? 1.0 : -1.0 ) / ( 1.0 - p[i] );
}
if( ans > 1e50 ) puts("INF");
else printf("%.7lf",ans);
}
bzoj4036 / P3175 [HAOI2015]按位或的更多相关文章
- 【BZOJ4036】[HAOI2015]按位或 FWT
[BZOJ4036][HAOI2015]按位或 Description 刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2^n-1]的数字,与你手上的数字进行或(c++,c的|,pascal的or ...
- luogu P3175 [HAOI2015]按位或
传送门 如果每个位置上的数字的意义是这个位置被加进集合的最早时间,那么我们要求的就是集合中最大数的期望,使用Min-Max容斥,\(E(max(S))=\sum_{T\subset S}(-1)^{| ...
- P3175 [HAOI2015]按位或
传送门 一如既往膜拜shadowice巨巨 前置姿势我就没一个会的-- //minamoto #include<bits/stdc++.h> #define R register #def ...
- [洛谷P3175][HAOI2015]按位或
题目大意:刚开始有一个数$x=0$,每秒钟有一个数$y\in[0,2^n)(n\leqslant20)$按一定概率随机出现,数$i$的概率为$p_i$,保证$\sum\limits_{i=0}^{2^ ...
- 洛谷 P3175 [HAOI2015]按位或
题目分析 与hdu4336 Card Collector相似,使用min-max容斥. 设\(\max(S)\)表示集合\(S\)中最后一位出现的期望时间. 设\(\min(S)\)表示集合\(S\) ...
- 【bzoj4036】[HAOI2015]按位或 fmt+期望
Description 刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2^n-1]的数字,与你手上的数字进行或(c++,c的|,pascal 的or)操作.选择数字i的概率是p[i].保证0&l ...
- [BZOJ 4036][HAOI2015]按位或
4036: [HAOI2015]按位或 Time Limit: 10 Sec Memory Limit: 256 MBSec Special JudgeSubmit: 746 Solved: 4 ...
- [luogu 3175] [HAOI2015]按位或(min-max容斥+高维前缀和)
[luogu 3175] [HAOI2015]按位或 题面 刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2^n-1]的数字,与你手上的数字进行按位或运算.问期望多少秒后,你手上的数字变成2^n ...
- BZOJ4036 [HAOI2015]按位或 FWT
原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ4036.html 题目传送门 - BZOJ4036 题意 刚开始你有一个数字 $0$ ,每一秒钟你会随机 ...
随机推荐
- 项目优化之v-if
前言: 在vue项目中,由于功能比较多,需要各种条件控制某个功能.某个标签.表格中的某一行是否显示等,需要使用大量的v-if来判断条件. 例如: <div v-if="isShow(a ...
- [对对子队]会议记录4.19(Scrum Meeting10)
今天已完成的工作 何瑞 工作内容:搭建第2关,基本完成第3关 相关issue:搭建关卡2.3 相关签入:4.19签入1 4.19签入2 刘子航 工作内容:完成关卡选择界面的设计图 ...
- Pogo-Cow S
这题出在单调队列优化dp里,就离谱好吧...... 对不住了上来先喷一波,不过离谱是确实的 dp的含义也很简单,就是说从j到i的分数最大值 直接上代马,里面说的很详细了 1 #include<b ...
- 认真讲说static关键字
static 关键字主要有以下四种使用场景 修饰成员变量和成员方法 静态代码块 修饰类(只能修饰内部类) 静态导包(用来导入类中的静态资源,1.5之后的新特性) 修饰成员变量和成员方法(常用) 被 s ...
- Hash算法:双重散列
双重散列是线性开型寻址散列(开放寻址法)中的冲突解决技术.双重散列使用在发生冲突时将第二个散列函数应用于键的想法. 此算法使用: (hash1(key) + i * hash2(key)) % TAB ...
- 字符串与模式匹配算法(四):BM算法
一.BM算法介绍 BM算法(Boyer-Moore算法)是罗伯特·波义尔(Robert Boyer)和杰·摩尔(J·Moore)在1977年共同提出的.与KMP算法不同的是,BM算法是模式串P由左向右 ...
- 数字在排序数组中出现的次数 牛客网 剑指Offer
数字在排序数组中出现的次数 牛客网 剑指Offer 题目描述 统计一个数字在排序数组中出现的次数. class Solution: def GetNumberOfK(self, data, k): i ...
- 第一个只出现一次字符的位置 牛客网 剑指Offer
第一个只出现一次字符的位置 牛客网 剑指Offer 题目描述 在一个字符串(0<=字符串长度<=10000,全部由字母组成)中找到第一个只出现一次的字符,并返回它的位置, 如果没有则返回 ...
- Python NameError:name ‘xrange’ is not defined
在python3 中会出这个问题,而xrange( )函数时在python 2.x中的一个函数,在Python 3中,range()的实现方式与xrange()函数相同,所以就不存在专用的xrange ...
- 0x03
指数级枚举:1到n任意选取的所有方案数: #include<bits/stdc++.h> using namespace std; int n,a[1100],vis[1100],cnt, ...