作者: 负雪明烛
id: fuxuemingzhu
个人博客: http://fuxuemingzhu.cn/


题目地址:https://leetcode.com/problems/cheapest-flights-within-k-stops/description/

题目描述

There are n cities connected by m flights. Each fight starts from city u and arrives at v with a price w.

Now given all the cities and flights, together with starting city src and the destination dst, your task is to find the cheapest price from src to dst with up to k stops. If there is no such route, output -1.

Example 1:

Input:
n = 3, edges = [[0,1,100],[1,2,100],[0,2,500]]
src = 0, dst = 2, k = 1
Output: 200
Explanation:
The graph looks like this:

The cheapest price from city 0 to city 2 with at most 1 stop costs 200, as marked red in the picture.

Example 2:

Input:
n = 3, edges = [[0,1,100],[1,2,100],[0,2,500]]
src = 0, dst = 2, k = 0
Output: 500
Explanation:
The graph looks like this:

The cheapest price from city 0 to city 2 with at most 0 stop costs 500, as marked blue in the picture.

Note:

  • The number of nodes n will be in range [1, 100], with nodes labeled from 0 to n - 1.
  • The size of flights will be in range [0, n * (n - 1) / 2].
  • The format of each flight will be (src, dst, price).
  • The price of each flight will be in the range [1, 10000].
  • k is in the range of [0, n - 1].
  • There will not be any duplicated flights or self cycles.

题目大意

有N个城市,m个航班,他们之间的连接是个有向图。现在已知最多可以中转k次,求从srt到dst的最小花费。

解题方法

图的遍历的基础上加上了一个限制条件:最多中转k次,即最多只能访问k+1个节点。可以用DFS和BFS两者方法去解决。

方法一:DFS

这个其实就是回溯法,先从起点开始向后搜索,如果搜索到了dst或者没有步数了,那么换下一条路进行搜索。需要使用一个visited数组表示已经搜索过的节点,这样可以防止走成一个环。

另外这个题需要一个强剪枝,就是当某条路径的花费大于了我们当前到达dst需要花费的最小值的时候,后面的路径都不需要走了,这个是由于题目给出的路费都是整数,向下走哪怕走到了dst花费也会更高。

时间复杂度是O(N^2),空间复杂度是O(1).打败了6%的提交。

class Solution(object):
def findCheapestPrice(self, n, flights, src, dst, K):
"""
:type n: int
:type flights: List[List[int]]
:type src: int
:type dst: int
:type K: int
:rtype: int
"""
graph = collections.defaultdict(dict)
for u, v, e in flights:
graph[u][v] = e
visited = [0] * n
ans = [float('inf')]
self.dfs(graph, src, dst, K + 1, 0, visited, ans)
return -1 if ans[0] == float('inf') else ans[0] def dfs(self, graph, src, dst, k, cost, visited, ans):
if src == dst:
ans[0] = cost
return
if k == 0:
return
for v, e in graph[src].items():
if visited[v]: continue
if cost + e > ans[0]: continue
visited[v] = 1
self.dfs(graph, v, dst, k - 1, cost + e, visited, ans)
visited[v] = 0

方法二:BFS

如果给定步数的情况下,一个更直接的方法就是BFS,这样就可以直接判断在指定的k步以内能不能走到dst,不会进行更多的搜索了,因此这个方法要快很多。

BFS是个模板,直接使用一个队列很容易就实现了。这个队列存放的是当我们进行第step次搜索时,搜索到的当前的节点,以及走到当前节点的花费。所以当当前节点走到dst时,更新最小花费。

时间复杂度是O(KN),空间复杂度是O(N).打败了60%的提交。

class Solution(object):
def findCheapestPrice(self, n, flights, src, dst, K):
"""
:type n: int
:type flights: List[List[int]]
:type src: int
:type dst: int
:type K: int
:rtype: int
"""
graph = collections.defaultdict(dict)
for u, v, e in flights:
graph[u][v] = e
ans = float('inf')
que = collections.deque()
que.append((src, 0))
step = 0
while que:
size = len(que)
for i in range(size):
cur, cost = que.popleft()
if cur == dst:
ans = min(ans, cost)
for v, w in graph[cur].items():
if cost + w > ans:
continue
que.append((v, cost + w))
if step > K: break
step += 1
return -1 if ans == float('inf') else ans

参考资料

https://www.youtube.com/watch?v=PLY-lbcxEjg

日期

2018 年 10 月 23 日 —— 风真是个好东西

【LeetCode】787. Cheapest Flights Within K Stops 解题报告(Python)的更多相关文章

  1. LeetCode 787. Cheapest Flights Within K Stops

    原题链接在这里:https://leetcode.com/problems/cheapest-flights-within-k-stops/ 题目: There are n cities connec ...

  2. [LeetCode] 787. Cheapest Flights Within K Stops K次转机内的最便宜航班

    There are n cities connected by m flights. Each fight starts from city u and arrives at v with a pri ...

  3. [LeetCode] 787. Cheapest Flights Within K Stops_Medium tag: Dynamic Programming, BFS, Heap

    There are n cities connected by m flights. Each fight starts from city u and arrives at v with a pri ...

  4. 787. Cheapest Flights Within K Stops

    There are n cities connected by m flights. Each fight starts from city u and arrives at v with a pri ...

  5. [LeetCode] Cheapest Flights Within K Stops K次转机内的最便宜的航班

    There are n cities connected by m flights. Each fight starts from city u and arrives at v with a pri ...

  6. [Swift]LeetCode787. K 站中转内最便宜的航班 | Cheapest Flights Within K Stops

    There are n cities connected by m flights. Each fight starts from city u and arrives at v with a pri ...

  7. Within K stops 最短路径 Cheapest Flights Within K Stops

    2018-09-19 22:34:28 问题描述: 问题求解: 本题是典型的最短路径的扩展题,可以使用Bellman Ford算法进行求解,需要注意的是在Bellman Ford算法的时候需要额外申请 ...

  8. 【LeetCode】94. Binary Tree Inorder Traversal 解题报告(Python&C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 解题方法 递归 迭代 日期 题目地址:https://leetcode.c ...

  9. 【LeetCode】341. Flatten Nested List Iterator 解题报告(Python&C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 递归+队列 栈 日期 题目地址:https://lee ...

随机推荐

  1. python 字典 key 对应多个 value

    基本思路是,将key对应的value设置为list,将对应的值append进去. 示例: f=open("a1.txt") ha={} for i in f: i=i.strip( ...

  2. do{...}while(0)的用法

    零.导引第一次见到 do{...}while(0)是在学习libevent的时候,看到里面有很多类似#define TT_URI(want) do { \ char *ret = evhttp_uri ...

  3. Redis | 第9章 Lua 脚本与排序《Redis设计与实现》

    目录 前言 1. Lua 脚本 1.1 Redis 创建并修改 Lua 环境的步骤 1.2 Lua 环境协作组件 1.3 EVAL 命令的实现 1.4 EVALSHA 命令的实现 1.5 脚本管理命令 ...

  4. .NET Core如何配置TLS Cipher(套件)?

    前言 前不久我发表了一篇关于TLS协议配置被我钻了空子,经过第三方合作伙伴验证,针对此TLS协议存在不安全套件,急催速速解决,那么我们本篇开始继续整活!第三方合作伙伴对平台安全严苛要求,我们已连续发版 ...

  5. C#数字验证

    using System; using System.Collections; using System.Configuration; using System.Data; using System. ...

  6. 6 — springboot中设置默认首页 -没屁用

    1.页面在static目录中时 2).测试 2.页面在templates模板引擎中时 1).这种需要导入相应的启动器 <dependency> <groupId>org.spr ...

  7. 学习java的第八天

    一.今日收获 1.学习完全学习手册上2.3转义字符与2.4运算符两节 二.今日难题 1.没有什么难理解的问题 三.明日目标 1.哔哩哔哩教学视频 2.Java学习手册

  8. day14搭建博客系统项目

    day14搭建博客系统项目 1.下载代码包 [root@web02 opt]# git clone https://gitee.com/lylinux/DjangoBlog.git 2.使用pid安装 ...

  9. Learning Spark中文版--第四章--使用键值对(2)

    Actions Available on Pair RDDs (键值对RDD可用的action)   和transformation(转换)一样,键值对RDD也可以使用基础RDD上的action(开工 ...

  10. [PE]结构分析与代码实现

    PE结构浅析 知识导向: 程序最开始是存放在磁盘上的,运行程序首先需要申请4GB的内存,将程序从磁盘copy到内存,但不是直接复制,而是进行拉伸处理. 这也就是为什么会有一个文件中地址和一个Virtu ...