SparkSQL电商用户画像(五)之用户画像开发(客户基本属性表)
7、电商用户画像开发
7.1用户画像--数据开发的步骤
u 数据开发前置依赖
-需求确定 pv uv topn
-建模确定表结构 create table t1(pv int,uv int,topn string)
-实现方案确定
u 数据开发过程
-表落地
-写sql语句实现业务逻辑
-部署代码
-数据测试
-试运行与上线
在接下来的客户基本属性表开发中演示开发的流程。
7.2 用户画像开发--客户基本属性表
--用户画像-客户基本属性模型表
create database if not exists gdm;
create table if not exists gdm.itcast_gdm_user_basic(
user_id string ,--用户ID
user_name string ,--用户登陆名
user_sex string ,--用户性别
user_birthday string ,--用户生日
user_age bigint ,--用户年龄
constellation string ,--用户星座
province string ,--省份
city string ,--城市
city_level string ,--城市等级
hex_mail string ,--邮箱
op_mail string ,--邮箱运营商
hex_phone string ,--手机号
fore_phone string ,--手机前3位
op_phone string ,--手机运营商
add_time timestamp ,--注册时间
login_ip string ,--登陆ip地址
login_source string ,--登陆来源
request_user string ,--邀请人
total_mark bigint ,--会员积分
used_mark bigint ,--已使用积分
level_name string ,--会员等级名称
blacklist bigint ,--用户黑名单
is_married bigint ,--婚姻状况
education string ,--学历
monthly_money double ,--收入
profession string ,--职业
sex_model bigint ,--性别模型
is_pregnant_woman bigint ,--是否孕妇
is_have_children bigint ,--是否有小孩
children_sex_rate double ,--孩子性别概率
children_age_rate double ,--孩子年龄概率
is_have_car bigint ,--是否有车
potential_car_user_rate double ,--潜在汽车用户概率
phone_brand string ,--使用手机品牌
phone_brand_level string ,--使用手机品牌档次
phone_cnt bigint ,--使用多少种不同的手机
change_phone_rate bigint ,--更换手机频率
majia_flag string ,--马甲标志
majie_account_cnt bigint ,--马甲账号数量
loyal_model bigint ,--用户忠诚度
shopping_type_model bigint ,--用户购物类型
figure_model bigint ,--身材
stature_model bigint ,--身高
dw_date timestamp
) partitioned by (dt string);
该模型表其基本信息主要来源于用户表、用户调查表。有静态信息和动态信息、后面的一些是数据挖掘模型(数据挖掘模型比较多,逻辑比较复杂,在机器学习课程中给大家介绍)。
#***************************
--客户基本属性模型表BDM层
create database if not exists bdm;
create external table if not exists bdm.itcast_bdm_user(
user_id string ,--用户ID
user_name string ,--用户登陆名
user_sex string ,--用户性别
user_birthday string ,--用户生日
user_age bigint ,--用户年龄
constellation string ,--用户星座
province string ,--省份
city string ,--城市
city_level string ,--城市等级
hex_mail string ,--邮箱
op_mail string ,--邮箱运营商
hex_phone string ,--手机号
fore_phone string ,--手机前3位
op_phone string ,--手机运营商
add_time string ,--注册时间
login_ip string ,--登陆ip地址
login_source string ,--登陆来源
request_user string ,--邀请人
total_mark bigint ,--会员积分
used_mark bigint ,--已使用积分
level_name string ,--会员等级名称
blacklist bigint ,--用户黑名单
is_married bigint ,--婚姻状况
education string ,--学历
monthly_money double ,--收入
profession string --职业
) partitioned by (dt string)
row format delimited fields terminated by ',';
alter table itcast_bdm_user add partition (dt='2017-01-01') location '/business/itcast_bdm_user/2017-01-01';
--客户基本属性表FDM层
create database if not exists fdm;
create table if not exists fdm.itcast_fdm_user_wide(
user_id string ,--用户ID
user_name string ,--用户登陆名
user_sex string ,--用户性别
user_birthday string ,--用户生日
user_age bigint ,--用户年龄
constellation string ,--用户星座
province string ,--省份
city string ,--城市
city_level string ,--城市等级
hex_mail string ,--邮箱
op_mail string ,--邮箱运营商
hex_phone string ,--手机号
fore_phone string ,--手机前3位
op_phone string ,--手机运营商
add_time string ,--注册时间
login_ip string ,--登陆ip地址
login_source string ,--登陆来源
request_user string ,--邀请人
total_mark bigint ,--会员积分
used_mark bigint ,--已使用积分
level_name string ,--会员等级名称
blacklist bigint ,--用户黑名单
is_married bigint ,--婚姻状况
education string ,--学历
monthly_money double ,--收入
profession string ,--职业
dw_date timestamp
) partitioned by (dt string);
--加载数据
insert overwrite table fdm.itcast_fdm_user_wide partition(dt='2017-01-01')
select
t.user_id,
t.user_name,
t.user_sex,
t.user_birthday,
t.user_age,
t.constellation,
t.province,
t.city,
t.city_level,
t.hex_mail,
t.op_mail,
t.hex_phone,
t.fore_phone,
t.op_phone,
t.add_time,
t.login_ip,
t.login_source,
t.request_user,
t.total_mark,
t.used_mark,
t.level_name,
t.blacklist,
t.is_married,
t.education,
t.monthly_money,
t.profession,
from_unixtime(unix_timestamp()) dw_date
from bdm.itcast_bdm_user t where dt='2017-01-01';
--用户画像-客户基本属性模型表GDM层
create database if not exists gdm;
create table if not exists gdm.itcast_gdm_user_basic(
user_id string ,--用户ID
user_name string ,--用户登陆名
user_sex string ,--用户性别
user_birthday string ,--用户生日
user_age bigint ,--用户年龄
constellation string ,--用户星座
province string ,--省份
city string ,--城市
city_level string ,--城市等级
hex_mail string ,--邮箱
op_mail string ,--邮箱运营商
hex_phone string ,--手机号
fore_phone string ,--手机前3位
op_phone string ,--手机运营商
add_time string ,--注册时间
login_ip string ,--登陆ip地址
login_source string ,--登陆来源
request_user string ,--邀请人
total_mark bigint ,--会员积分
used_mark bigint ,--已使用积分
level_name string ,--会员等级名称
blacklist bigint ,--用户黑名单
is_married bigint ,--婚姻状况
education string ,--学历
monthly_money double ,--收入
profession string ,--职业
sex_model bigint ,--性别模型
is_pregnant_woman bigint ,--是否孕妇
is_have_children bigint ,--是否有小孩
children_sex_rate double ,--孩子性别概率
children_age_rate double ,--孩子年龄概率
is_have_car bigint ,--是否有车
potential_car_user_rate double ,--潜在汽车用户概率
phone_brand string ,--使用手机品牌
phone_brand_level string ,--使用手机品牌档次
phone_cnt bigint ,--使用多少种不同的手机
change_phone_rate bigint ,--更换手机频率
majia_flag string ,--马甲标志
majie_account_cnt bigint ,--马甲账号数量
loyal_model bigint ,--用户忠诚度
shopping_type_model bigint ,--用户购物类型
figure_model bigint ,--身材
stature_model bigint ,--身高
dw_date timestamp
) partitioned by (dt string);
--加载数据
insert overwrite table gdm.itcast_gdm_user_basic partition(dt='2017-01-01')
select
t.user_id,
t.user_name,
t.user_sex,
t.user_birthday,
t.user_age,
t.constellation,
t.province,
t.city,
t.city_level,
t.hex_mail,
t.op_mail,
t.hex_phone,
t.fore_phone,
t.op_phone,
t.add_time,
t.login_ip,
t.login_source,
t.request_user,
t.total_mark,
t.used_mark,
t.level_name,
t.blacklist,
t.is_married,
t.education,
t.monthly_money,
t.profession,
null sex_model,--数据挖掘模型-开始
null is_pregnant_woman,
null is_have_children,
null children_sex_rate,
null children_age_rate,
null is_have_car,
null potential_car_user_rate,
null phone_brand,
null phone_brand_level,
null phone_cnt,
null change_phone_rate,
null majia_flag,
null majie_account_cnt,
null loyal_model,
null shopping_type_model,
null figure_model,
null stature_model,--数据挖掘模型-结束
from_unixtime(unix_timestamp()) dw_date
from (select * from fdm.itcast_fdm_user_wide where dt='2017-01-01') t;
itcast_gdm_user_basic.sh
演示模型表开发脚本:
######################
#名称:客户基本属性模型表
# itcast_gdm_user_basic.sh
######################
#!/bin/sh
yesterday=`date -d '-1 day' "+%Y-%m-%d"`
if [ $1 ];then
yesterday=$1
fi
SPARK_SUBMIT_INFO="/export/servers/spark/bin/spark-sql --master spark://node1:7077 --executor-memory 1g --total-executor-cores 2 --conf spark.sql.warehouse.dir=hdfs://node1:9000/user/hive/warehouse"
SOURCE_DATA="/root/source_data"
SQL_BDM="create database if not exists bdm;
create external table if not exists bdm.itcast_bdm_user(
user_id string ,--用户ID
user_name string ,--用户登陆名
user_sex string ,--用户性别
user_birthday string ,--用户生日
user_age bigint ,--用户年龄
constellation string ,--用户星座
province string ,--省份
city string ,--城市
city_level string ,--城市等级
hex_mail string ,--邮箱
op_mail string ,--邮箱运营商
hex_phone string ,--手机号
fore_phone string ,--手机前3位
op_phone string ,--手机运营商
add_time string ,--注册时间
login_ip string ,--登陆ip地址
login_source string ,--登陆来源
request_user string ,--邀请人
total_mark bigint ,--会员积分
used_mark bigint ,--已使用积分
level_name string ,--会员等级名称
blacklist bigint ,--用户黑名单
is_married bigint ,--婚姻状况
education string ,--学历
monthly_money double ,--收入
profession string --职业
) partitioned by (dt string)
row format delimited fields terminated by ','
location '/business/bdm/itcast_bdm_user' ;
alter table bdm.itcast_bdm_user add partition (dt='$yesterday');"
SQL_FDM="create database if not exists fdm;
create table if not exists fdm.itcast_fdm_user_wide(
user_id string ,--用户ID
user_name string ,--用户登陆名
user_sex string ,--用户性别
user_birthday string ,--用户生日
user_age bigint ,--用户年龄
constellation string ,--用户星座
province string ,--省份
city string ,--城市
city_level string ,--城市等级
hex_mail string ,--邮箱
op_mail string ,--邮箱运营商
hex_phone string ,--手机号
fore_phone string ,--手机前3位
op_phone string ,--手机运营商
add_time string ,--注册时间
login_ip string ,--登陆ip地址
login_source string ,--登陆来源
request_user string ,--邀请人
total_mark bigint ,--会员积分
used_mark bigint ,--已使用积分
level_name string ,--会员等级名称
blacklist bigint ,--用户黑名单
is_married bigint ,--婚姻状况
education string ,--学历
monthly_money double ,--收入
profession string ,--职业
dw_date timestamp
) partitioned by (dt string);"
##加载数据
LOAD_FDM="
insert overwrite table fdm.itcast_fdm_user_wide partition(dt='$yesterday')
select
t.user_id,
t.user_name,
t.user_sex,
t.user_birthday,
t.user_age,
t.constellation,
t.province,
t.city,
t.city_level,
t.hex_mail,
t.op_mail,
t.hex_phone,
t.fore_phone,
t.op_phone,
t.add_time,
t.login_ip,
t.login_source,
t.request_user,
t.total_mark,
t.used_mark,
t.level_name,
t.blacklist,
t.is_married,
t.education,
t.monthly_money,
t.profession,
from_unixtime(unix_timestamp()) dw_date
from bdm.itcast_bdm_user t where dt='$yesterday';"
SQL_GDM="create database if not exists gdm;
create table if not exists gdm.itcast_gdm_user_basic(
user_id string ,--用户ID
user_name string ,--用户登陆名
user_sex string ,--用户性别
user_birthday string ,--用户生日
user_age bigint ,--用户年龄
constellation string ,--用户星座
province string ,--省份
city string ,--城市
city_level string ,--城市等级
hex_mail string ,--邮箱
op_mail string ,--邮箱运营商
hex_phone string ,--手机号
fore_phone string ,--手机前3位
op_phone string ,--手机运营商
add_time string ,--注册时间
login_ip string ,--登陆ip地址
login_source string ,--登陆来源
request_user string ,--邀请人
total_mark bigint ,--会员积分
used_mark bigint ,--已使用积分
level_name string ,--会员等级名称
blacklist bigint ,--用户黑名单
is_married bigint ,--婚姻状况
education string ,--学历
monthly_money double ,--收入
profession string ,--职业
sex_model bigint ,--性别模型
is_pregnant_woman bigint ,--是否孕妇
is_have_children bigint ,--是否有小孩
children_sex_rate double ,--孩子性别概率
children_age_rate double ,--孩子年龄概率
is_have_car bigint ,--是否有车
potential_car_user_rate double,--潜在汽车用户概率
phone_brand string ,--使用手机品牌
phone_brand_level string ,--使用手机品牌档次
phone_cnt bigint ,--使用多少种不同的手机
change_phone_rate bigint ,--更换手机频率
majia_flag string ,--马甲标志
majie_account_cnt bigint ,--马甲账号数量
loyal_model bigint ,--用户忠诚度
shopping_type_model bigint ,--用户购物类型
figure_model bigint ,--身材
stature_model bigint ,--身高
dw_date timestamp
) partitioned by (dt string);"
##加载数据到GDM
LOAD_GDM="insert overwrite table gdm.itcast_gdm_user_basic partition(dt='$yesterday')
select
t.user_id,
t.user_name,
t.user_sex,
t.user_birthday,
t.user_age,
t.constellation,
t.province,
t.city,
t.city_level,
t.hex_mail,
t.op_mail,
t.hex_phone,
t.fore_phone,
t.op_phone,
t.add_time,
t.login_ip,
t.login_source,
t.request_user,
t.total_mark,
t.used_mark,
t.level_name,
t.blacklist,
t.is_married,
t.education,
t.monthly_money,
t.profession,
null sex_model,--数据挖掘模型-开始
null is_pregnant_woman,
null is_have_children,
null children_sex_rate,
null children_age_rate,
null is_have_car,
null potential_car_user_rate,
null phone_brand,
null phone_brand_level,
null phone_cnt,
null change_phone_rate,
null majia_flag,
null majie_account_cnt,
null loyal_model,
null shopping_type_model,
null figure_model,
null stature_model,--数据挖掘模型-结束
from_unixtime(unix_timestamp()) dw_date
from (select * from fdm.itcast_fdm_user_wide where dt='$yesterday') t;"
##创建BDM层表
echo "${SQL_BDM}"
$SPARK_SUBMIT_INFO -e "${SQL_BDM}"
##添加数据到BDM
hdfs dfs -put $SOURCE_DATA/itcast_bdm_user.txt /business/bdm/itcast_bdm_user/"dt=$yesterday"
##创建FDM层表
echo "${SQL_FDM}"
$SPARK_SUBMIT_INFO -e "${SQL_FDM}"
##导入数据到FDM
echo "${LOAD_FDM}"
$SPARK_SUBMIT_INFO -e "${LOAD_FDM}"
##创建GDM层表
echo "${SQL_GDM}"
$SPARK_SUBMIT_INFO -e "${SQL_GDM}"
##导入GDM数据
echo "${LOAD_GDM}"
$SPARK_SUBMIT_INFO -e "${LOAD_GDM}"
SparkSQL电商用户画像(五)之用户画像开发(客户基本属性表)的更多相关文章
- SparkSQL电商用户画像(三)之环境准备
五. 电商用户画像环境搭建 众所周知,Hive的执行任务是将hql语句转化为MapReduce来计算的,Hive的整体解决方案很不错,但是从查询提交到结果返回需要相当长的时间,查询耗时太长.这个主要原 ...
- SparkSQL电商用户画像(二)之如何构建画像
四. 如何构建电商用户画像 4.1 构建电商用户画像技术和流程 构建一个用户画像,包括数据源端数据收集.数据预处理.行为建模.构建用户画像 有些标签是可以直接获取到的,有些标签需要通过数据挖掘分析到! ...
- SparkSQL电商用户画像(四)之电商用户画像数据仓库建立
六. 电商用户画像数据仓库建立 7.1 数据仓库准备工作 为什么要对数据仓库分层?星型模型 雪花模型 User----->web界面展示指标表 l 用空间换时间,通过大量的预处理来提升 ...
- Flink SQL结合Kafka、Elasticsearch、Kibana实时分析电商用户行为
body { margin: 0 auto; font: 13px / 1 Helvetica, Arial, sans-serif; color: rgba(68, 68, 68, 1); padd ...
- Spark项目之电商用户行为分析大数据平台之(一)项目介绍
一.项目概述 本项目主要用于互联网电商企业中,使用Spark技术开发的大数据统计分析平台,对电商网站的各种用户行为(访问行为.购物行为.广告点击行为等)进行复杂的分析.用统计分析出来的数据,辅助公司中 ...
- Spark项目之电商用户行为分析大数据平台之(六)用户访问session分析模块介绍
一.对用户访问session进行分析 1.可以根据使用者指定的某些条件,筛选出指定的一些用户(有特定年龄.职业.城市): 2.对这些用户在指定日期范围内发起的session,进行聚合统计,比如,统计出 ...
- Spark项目之电商用户行为分析大数据平台之(五)实时数据采集
- Spark大型项目实战:电商用户行为分析大数据平台
本项目主要讲解了一套应用于互联网电商企业中,使用Java.Spark等技术开发的大数据统计分析平台,对电商网站的各种用户行为(访问行为.页面跳转行为.购物行为.广告点击行为等)进行复杂的分析.用统计分 ...
- Spark项目之电商用户行为分析大数据平台之(十二)Spark上下文构建及模拟数据生成
一.模拟生成数据 package com.bw.test; import java.util.ArrayList; import java.util.Arrays; import java.util. ...
随机推荐
- incubator-dolphinscheduler 如何在不写任何新代码的情况下,能快速接入到prometheus和grafana中进行监控
一.prometheus和grafana 简介 prometheus是由谷歌研发的一款开源的监控软件,目前已经贡献给了apache 基金会托管. 监控通常分为白盒监控和黑盒监控之分. 白盒监控:通过监 ...
- 【Django】有关多用户管理的一点小经验分享
前言 最近,笔者因为需要开发一个系统作为毕设的展示,因此就产生了有关多用户管理的问题.在这里我把自己的需求重新阐明一下:能够通过Django自带的用户管理框架,实现多用户的管理,例如登录.登出.ses ...
- crx 文件安装 如何安装 Chrome插件
Chrome 67 版本(大概2018.06.06的更新包)开始,插件已经无法离线安装啦,也就是自己无法使用crx文件安装插件, 而只能从chrome.google.com/webst ...
- 再学dockerfile
前言 docker的系统学习可以看我这篇博文:https://www.cnblogs.com/zisefeizhu/p/11298818.html 有非常详细的讲解 容器现在都是用kubernetes ...
- 【Visual Studio调教小记录】C++指针靠前靠后??
本文地址:https://www.cnblogs.com/oberon-zjt0806/p/14631149.html 甜咸之争 经常写C++的基本上避不开使用指针,而且C++中指针类型的写法大体上有 ...
- RabbitMQ 入门 (Go) - 7. 数据持久化(下)【完】
数据库 我使用的是 PostgreSQL. 使用的驱动是 github.com/lib/pq 这个网址 https://pkg.go.dev/github.com/lib/pq 是官方文档. 创建数据 ...
- 翻译:《实用的Python编程》08_02_Logging
目录 | 上一节 (8.1 测试) | 下一节 (8.3 调试) 8.2 日志 本节对日志模块(logging module)进行简单的介绍. logging 模块 logging 模块是用于记录诊断 ...
- 【C/C++】面相对象开发之封装
封装继承多态是面向对象程序开发的基础概念.是实现面向对象的基本要素. 封装 程序开发,最核心价值,是数据. 程序其实是读取数据,操作数据,保存数据等一系列操作. 那么经过良好组织过的数据,将使编程事半 ...
- 结对编程_stage2
项目 内容 这个作业属于哪个课程 2021春季软件工程(罗杰 任健) 这个作业的要求在哪里 结对项目-第二阶段 我在这个课程的目标是 从实践中学习软件工程相关知识(结构化分析和设计方法.敏捷开发方法. ...
- 安装mmdetection,运行报错Segmentation fault
具体安装过程详见https://github.com/open-mmlab/mmdetection/blob/master/docs/INSTALL.md 在安装完成mmdetection后运行tes ...