Introduction

词嵌入(word embedding)是降维算法(Dimension Reduction)的典型应用

那如何用vector来表示一个word呢?

1-of-N Encoding

最传统的做法是1-of-N Encoding,假设这个vector的维数就等于世界上所有单词的数目,那么对每一个单词来说,只需要某一维为1,其余都是0即可;但这会导致任意两个vector都是不一样的,你无法建立起同类word之间的联系

Word Class

还可以把有同样性质的word进行聚类(clustering),划分成多个class,然后用word所属的class来表示这个word,但光做clustering是不够的,不同class之间关联依旧无法被有效地表达出来

Word Embedding

词嵌入(Word Embedding)把每一个word都投影到高维空间上,当然这个空间的维度要远比1-of-N Encoding的维度低,假如后者有10w维,那前者只需要50~100维就够了,这实际上也是Dimension Reduction的过程

类似语义(semantic)的词汇,在这个word embedding的投影空间上是比较接近的,而且该空间里的每一维都可能有特殊的含义

假设词嵌入的投影空间如下图所示,则横轴代表了生物与其它东西之间的区别,而纵轴则代表了会动的东西与静止的东西之间的差别

怎么做Word Embedding?

那怎么做word Embedding呢?word Embedding是Unsupervised 。我们怎么让machine知道每一个词汇的含义是什么呢,你只要透过machine阅读大量的文章,它就可以知道每一个词汇它的embeding feature vector应该长什么样子。

word embedding是一个无监督的方法(unsupervised approach),只要让机器阅读大量的文章,它就可以知道每一个词汇embedding之后的特征向量应该长什么样子。

我们的任务就是训练一个neural network,input是词汇,output则是它所对应的word embedding vector,实际训练的时候我们只有data的input,该如何解这类问题呢?

之前提到过一种基于神经网络的降维方法,Auto-encoder,就是训练一个model,让它的输入等于输出,取出中间的某个隐藏层就是降维的结果,自编码的本质就是通过自我压缩和解压的过程来寻找各个维度之间的相关信息;但word embedding这个问题是不能用Auto-encoder来解的,因为输入的向量通常是1-of-N编码,各维无关,很难通过自编码的过程提取出什么有用信息。

Word Embedding

basic idea

基本精神就是,每一个词汇的含义都可以根据它的上下文来得到

比如机器在两个不同的地方阅读到了“马英九520宣誓就职”、“蔡英文520宣誓就职”,它就会发现“马英九”和“蔡英文”前后都有类似的文字内容,于是机器就可以推测“马英九”和“蔡英文”这两个词汇代表了可能有同样地位的东西,即使它并不知道这两个词汇是人名

怎么用这个思想来找出word embedding的vector呢?有两种做法:

  • Count based
  • Prediction based

Count based

Prediction based

how to do perdition

Why prediction works

Sharing Parameters

14-2-Unsupervised Learning ----Word Embedding的更多相关文章

  1. Unsupervised Learning: Use Cases

    Unsupervised Learning: Use Cases Contents Visualization K-Means Clustering Transfer Learning K-Neare ...

  2. Unsupervised Learning and Text Mining of Emotion Terms Using R

    Unsupervised learning refers to data science approaches that involve learning without a prior knowle ...

  3. 从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史(转载)

    转载 https://zhuanlan.zhihu.com/p/49271699 首发于深度学习前沿笔记 写文章   从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史 张 ...

  4. 建模角度理解word embedding及tensorflow实现

    http://www.jianshu.com/p/d44ce1e3ec2f 1. 前言 本篇主要介绍关键词的向量表示,也就是大家熟悉的word embedding.自Google 2013 年开源wo ...

  5. Word Embedding与Word2Vec

    http://blog.csdn.net/baimafujinji/article/details/77836142 一.数学上的“嵌入”(Embedding) Embed这个词,英文的释义为, fi ...

  6. DeepNLP的核心关键/NLP词的表示方法类型/NLP语言模型 /词的分布式表示/word embedding/word2vec

    DeepNLP的核心关键/NLP语言模型 /word embedding/word2vec Indexing: 〇.序 一.DeepNLP的核心关键:语言表示(Representation) 二.NL ...

  7. [DeeplearningAI笔记]序列模型2.1-2.2词嵌入word embedding

    5.2自然语言处理 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.1词汇表征 Word representation 原先都是使用词汇表来表示词汇,并且使用1-hot编码的方式来表示词汇 ...

  8. Unsupervised learning, attention, and other mysteries

    Unsupervised learning, attention, and other mysteries Get notified when our free report “Future of M ...

  9. 无监督学习(Unsupervised Learning)

    无监督学习(Unsupervised Learning) 聚类无监督学习 特点 只给出了样本, 但是没有提供标签 通过无监督学习算法给出的样本分成几个族(cluster), 分出来的类别不是我们自己规 ...

随机推荐

  1. 10.2 PHP

    WEB资源类型 静态资源:原始形式与响应内容一致,在客户端浏览器执行 动态资源:原始形式通常为程序文件,需要在服务器端执行之后,将执行结果返回给客户端 WEB相关语言 客户端技术:html JavaS ...

  2. 升级了 Windows 11 正式版,有坑吗?

    今天磊哥去公司上班,惊喜的发现 Windows 提示更新了,并且是 Windows 11 正式版,这太让人开心了,二话不说"先升为敬". ​ 下载更新 下载完咱就重启更新呗. Wi ...

  3. spark性能优化(一)

    本文内容说明 初始化配置给rdd和dataframe带来的影响 repartition的相关说明 cache&persist的相关说明 性能优化的说明建议以及实例 配置说明 spark:2.4 ...

  4. Ruby on Rails 单元测试

    Ruby on Rails 单元测试 为什么要写测试文件? 软件开发中,一个重要的环节就是编写测试文件,对代码进行单元测试,确保程序各部分功能执行正确.但是,这一环节很容易被我们轻视,认为进行单元测试 ...

  5. FastAPI 学习之路(三十四)数据库多表操作

    之前我们分享的是基于单个的数据库表的操作,我们在设计数据库的时候也设计了跨表,我们可以看下数据库的设计. class User(Base): __tablename__ = "users&q ...

  6. 嵌入式单片机之STM32F103C8T6最小系统板电路设计参考

    STM32F103C8T6最小系统板电路设计 一.电源部分 设计了一个XH插座,以便使用3.7V锂电池供电,接入电压不允许超过6V. 二.指示灯部分 电源指示灯可以通过一个短路帽控制亮灭,以达到节电的 ...

  7. 关于STM32 (Cortex-M3) 中NVIC的分析

    一.STM32 (Cortex-M3) 中的优先级概念 STM32(Cortex-M3)中有两个优先级的概念:抢占式优先级和响应优先级,也把响应优先级称作"亚优先级"或" ...

  8. xUtils3的使用教程

    首先在build.gradle下的dependencies下添加引用. implementation 'org.xutils:xutils:3.3.36' 然后创建一个表实体. package com ...

  9. python re:正则表达式中使用变量

    参考:https://www.cnblogs.com/songbiao/p/12422632.html Python中正则表达式的写法,核心就是一个字符串.如下:re.compile(r'表达式')所 ...

  10. hdu 1083 Courses(二分图最大匹配)

    题意: P门课,N个学生.     (1<=P<=100    1<=N<=300) 每门课有若干个学生可以成为这门课的代表(即候选人). 又规定每个学生最多只能成为一门课的代 ...