14-2-Unsupervised Learning ----Word Embedding
Introduction
词嵌入(word embedding)是降维算法(Dimension Reduction)的典型应用
那如何用vector来表示一个word呢?
1-of-N Encoding
最传统的做法是1-of-N Encoding,假设这个vector的维数就等于世界上所有单词的数目,那么对每一个单词来说,只需要某一维为1,其余都是0即可;但这会导致任意两个vector都是不一样的,你无法建立起同类word之间的联系
Word Class
还可以把有同样性质的word进行聚类(clustering),划分成多个class,然后用word所属的class来表示这个word,但光做clustering是不够的,不同class之间关联依旧无法被有效地表达出来
Word Embedding
词嵌入(Word Embedding)把每一个word都投影到高维空间上,当然这个空间的维度要远比1-of-N Encoding的维度低,假如后者有10w维,那前者只需要50~100维就够了,这实际上也是Dimension Reduction的过程
类似语义(semantic)的词汇,在这个word embedding的投影空间上是比较接近的,而且该空间里的每一维都可能有特殊的含义
假设词嵌入的投影空间如下图所示,则横轴代表了生物与其它东西之间的区别,而纵轴则代表了会动的东西与静止的东西之间的差别

怎么做Word Embedding?

那怎么做word Embedding呢?word Embedding是Unsupervised 。我们怎么让machine知道每一个词汇的含义是什么呢,你只要透过machine阅读大量的文章,它就可以知道每一个词汇它的embeding feature vector应该长什么样子。

word embedding是一个无监督的方法(unsupervised approach),只要让机器阅读大量的文章,它就可以知道每一个词汇embedding之后的特征向量应该长什么样子。
我们的任务就是训练一个neural network,input是词汇,output则是它所对应的word embedding vector,实际训练的时候我们只有data的input,该如何解这类问题呢?
之前提到过一种基于神经网络的降维方法,Auto-encoder,就是训练一个model,让它的输入等于输出,取出中间的某个隐藏层就是降维的结果,自编码的本质就是通过自我压缩和解压的过程来寻找各个维度之间的相关信息;但word embedding这个问题是不能用Auto-encoder来解的,因为输入的向量通常是1-of-N编码,各维无关,很难通过自编码的过程提取出什么有用信息。
Word Embedding
basic idea
基本精神就是,每一个词汇的含义都可以根据它的上下文来得到
比如机器在两个不同的地方阅读到了“马英九520宣誓就职”、“蔡英文520宣誓就职”,它就会发现“马英九”和“蔡英文”前后都有类似的文字内容,于是机器就可以推测“马英九”和“蔡英文”这两个词汇代表了可能有同样地位的东西,即使它并不知道这两个词汇是人名

怎么用这个思想来找出word embedding的vector呢?有两种做法:
- Count based
- Prediction based
Count based

Prediction based
how to do perdition

Why prediction works


Sharing Parameters
14-2-Unsupervised Learning ----Word Embedding的更多相关文章
- Unsupervised Learning: Use Cases
Unsupervised Learning: Use Cases Contents Visualization K-Means Clustering Transfer Learning K-Neare ...
- Unsupervised Learning and Text Mining of Emotion Terms Using R
Unsupervised learning refers to data science approaches that involve learning without a prior knowle ...
- 从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史(转载)
转载 https://zhuanlan.zhihu.com/p/49271699 首发于深度学习前沿笔记 写文章 从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史 张 ...
- 建模角度理解word embedding及tensorflow实现
http://www.jianshu.com/p/d44ce1e3ec2f 1. 前言 本篇主要介绍关键词的向量表示,也就是大家熟悉的word embedding.自Google 2013 年开源wo ...
- Word Embedding与Word2Vec
http://blog.csdn.net/baimafujinji/article/details/77836142 一.数学上的“嵌入”(Embedding) Embed这个词,英文的释义为, fi ...
- DeepNLP的核心关键/NLP词的表示方法类型/NLP语言模型 /词的分布式表示/word embedding/word2vec
DeepNLP的核心关键/NLP语言模型 /word embedding/word2vec Indexing: 〇.序 一.DeepNLP的核心关键:语言表示(Representation) 二.NL ...
- [DeeplearningAI笔记]序列模型2.1-2.2词嵌入word embedding
5.2自然语言处理 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.1词汇表征 Word representation 原先都是使用词汇表来表示词汇,并且使用1-hot编码的方式来表示词汇 ...
- Unsupervised learning, attention, and other mysteries
Unsupervised learning, attention, and other mysteries Get notified when our free report “Future of M ...
- 无监督学习(Unsupervised Learning)
无监督学习(Unsupervised Learning) 聚类无监督学习 特点 只给出了样本, 但是没有提供标签 通过无监督学习算法给出的样本分成几个族(cluster), 分出来的类别不是我们自己规 ...
随机推荐
- nginx禁止IP访问系统
server { listen 80 default; server_name _; if ($host ~ "\d+\.\d+\.\d+\.\d") { return 404; ...
- mysql group by语句流程是怎么样的
group by流程是怎么样的 注意点: select id%10 as m, count(*) as c from t1 group by m; group by是用于对数据进行分组,我们排序用到了 ...
- [源码解析] PyTorch如何实现前向传播(3) --- 具体实现
[源码解析] PyTorch如何实现前向传播(3) --- 具体实现 目录 [源码解析] PyTorch如何实现前向传播(3) --- 具体实现 0x00 摘要 0x01 计算图 1.1 图的相关类 ...
- centos7 配置ftp服务器搭建(匿名访问,以及本地登录)
大家好,今天来给大家分享一个基于centos 7的ftp服务器搭建 实现功能:匿名访问,本地登录 查看系统版本: [root@localhost ~]# cat /etc/redhat-release ...
- SpringCloud微服务实战——搭建企业级开发框架(六):使用knife4j集成Swagger2接口文档
knife4j是为集成Swagger生成api文档的增强解决方案,前后端Java代码以及前端Ui模块进行分离,在微服务架构下使用更加灵活, 提供专注于Swagger的增强解决方案,不同于只是改善增强前 ...
- httpclient 登录成功后返回的cookie值访问下一页面
HttpClient4.x可以自带维持会话功能,只要使用同一个HttpClient且未关闭连接,则可以使用相同会话来访问其他要求登录验证的服务(见TestLogin()方法中的"执行get请 ...
- BUAA 2020 软件工程 热身作业
BUAA 2020 软件工程 热身作业 Author: 17373051 郭骏 项目 内容 这个作业属于哪个课程 2020春季计算机学院软件工程(罗杰 任健) 这个作业的要求在哪里 第一次作业-热身! ...
- 零基础学习STM32之入门学习路线
可以说就目前的市场需求来看,stm32在单片机领域已经拥有了绝对的地位,51什么的已经过时了也只能拿来打基础了,最后依然会转到stm32来,也正是因为这样stm32的学习者越来越多,其中不难发现绝大部 ...
- Vulnstack内网靶场3
Vulnstack内网靶场3 (qiyuanxuetang.net) 环境配置 打开虚拟机镜像为挂起状态,第一时间进行快照,部分服务未做自启,重启后无法自动运行. 挂起状态,账号已默认登陆,cento ...
- python doc os 参考
os --- 操作系统接口模块 源代码: Lib/os.py 该模块提供了一些方便使用操作系统相关功能的函数. 如果你是想读写一个文件,请参阅 open(),如果你想操作路径,请参阅 os.path ...