[luogu7736]路径交点
对于两条路径,注意到每一个交点都会改变两者的上下关系,因此两条路径交点的奇偶性,仅取决于两者的起点和终点是否改变了上下关系(改变即为奇数)
类似地,对于整个路径方案,令$p_{i}$为以第一层的$i$为起点的路径在第$K$层的终点,那么该方案的交点数的奇偶性,仅取决于$p_{i}$逆序对数(与逆序对数的奇偶性相同)
但注意到方案还有一个限制:不允许经过重复的点
但事实上,当经过了重复的点,显然将之后的两部分交换,恰好会改变$p_{i}$逆序对数的奇偶性
更准确的来说,考虑起点编号最小的两条有公共点的路径,将两者第一个公共点以后的部分交换,显然反过来另一条路径对应的也是原路径,即可以抵消
由此,令$A_{i,j}$表示起点为第一层的$i$且终点为第$K$层的$j$,显然答案即为$A$的行列式,可以$o(n^{3})$求出
关于如何求$A$,令$G_{i}$为第$i$层和第$i+1$层之间的邻接矩阵(大小为$n_{i}\times n_{i+1}$),显然$A=\prod_{i=1}^{k-1}G_{i}$(其中乘法为矩阵乘法),可以$o(kn^{3})$求出
(单组数据)总复杂度为$o(kn^{3})$,可以通过

1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 205
4 #define mod 998244353
5 #define ll long long
6 int t,K,x,y,ans,n[N],m[N],a[N][N][N],b[N][N],c[N][N];
7 int read(){
8 int x=0;
9 char c=getchar();
10 while ((c<'0')||(c>'9'))c=getchar();
11 while ((c>='0')&&(c<='9')){
12 x=x*10+c-'0';
13 c=getchar();
14 }
15 return x;
16 }
17 int qpow(int n,int m){
18 int s=n,ans=1;
19 while (m){
20 if (m&1)ans=(ll)ans*s%mod;
21 s=(ll)s*s%mod;
22 m>>=1;
23 }
24 return ans;
25 }
26 int guess(int n){
27 int ans=1;
28 for(int i=1;i<=n;i++){
29 int k=-1;
30 for(int j=i;j<=n;j++)
31 if (b[j][i]){
32 k=j;
33 break;
34 }
35 if (k<0)return 0;
36 if (k!=i){
37 ans=mod-ans;
38 for(int j=i;j<=n;j++)swap(b[i][j],b[k][j]);
39 }
40 ans=(ll)ans*b[i][i]%mod;
41 int s=qpow(b[i][i],mod-2);
42 for(int j=i;j<=n;j++)b[i][j]=(ll)b[i][j]*s%mod;
43 for(int j=i+1;j<=n;j++){
44 int s=b[j][i];
45 for(int k=i;k<=n;k++)b[j][k]=(b[j][k]-(ll)s*b[i][k]%mod+mod)%mod;
46 }
47 }
48 return ans;
49 }
50 int main(){
51 t=read();
52 while (t--){
53 K=read();
54 for(int i=1;i<=K;i++)n[i]=read();
55 for(int i=1;i<K;i++)m[i]=read();
56 memset(a,0,sizeof(a));
57 for(int i=1;i<K;i++)
58 for(int j=1;j<=m[i];j++){
59 x=read(),y=read();
60 a[i][x][y]=1;
61 }
62 memset(b,0,sizeof(b));
63 for(int i=1;i<=n[1];i++)b[i][i]=1;
64 for(int t=1;t<K;t++){
65 memset(c,0,sizeof(c));
66 for(int i=1;i<=n[1];i++)
67 for(int j=1;j<=n[t];j++)
68 for(int k=1;k<=n[t+1];k++)c[i][k]=(c[i][k]+(ll)b[i][j]*a[t][j][k])%mod;
69 memcpy(b,c,sizeof(b));
70 }
71 printf("%d\n",guess(n[1]));
72 }
73 return 0;
74 }
[luogu7736]路径交点的更多相关文章
- P7736-[NOI2021]路径交点【LGV引理】
正题 题目链接:https://www.luogu.com.cn/problem/P7736 题目大意 有\(k\)层的图,第\(i\)层有\(n_i\)个点,每层的点从上到下排列,层从左到右排列.再 ...
- canvas判断点是否在路径内
应用场景 我们的项目中有个功能是,canvas上的某个图片选中后可以再这个图片上用鼠标拖拽绘制画笔线条. 当然绘制的边界要控制在图片大小范围内的,那么鼠标是可以随意动的,怎么能控制只在图片上的时候才绘 ...
- LGV 引理——二维DAG上 n 点对不相交路径方案数
文章目录 引入 简介 定义 引理 证明 例题 释疑 扩展 引入 有这样一个问题: 甲和乙在一张网格图上,初始位置 ( x 1 , y 1 ) , ( x 2 , y 2 ) (x_1,y_1),(x_ ...
- CodeForces 590C Three States BFS
Three Statesy 题解: 以3个大陆为起点,都dfs一遍,求出该大陆到其他点的最小距离是多少, 然后枚举每个点作为3个大陆的路径交点. 代码: #include<bits/stdc++ ...
- 2021NOI同步赛
\(NOI\) 网上同步赛 明白了身为菜鸡的自己和普通人的差距 DAY1 \(T1\) 轻重边 [题目描述] 小 W 有一棵 \(n\) 个结点的树,树上的每一条边可能是轻边或者重边.接下来你需要对树 ...
- LGV 引理小记
讲个笑话,NOI 之前某场模拟赛让我知道了这个神奇的科技,于是准备 NOI 之前学完,结果鸽着鸽着就鸽掉了,考 day1 之前一天本来准备花一天时间学的,然后我就开玩笑般地跟自己说,这么 trivia ...
- LGV 引理
(其实是贺的:https://www.luogu.com.cn/paste/whl2joo4) 目录 LGV 引理 不相交路径计数 例题 Luogu6657. [模板]LGV 引理 CF348D Tu ...
- codeforces 8D Two Friends 二分+ 判断三个圆是否有公共交点
题目链接 有两个人x, y, 现在在A点, x要直接去B点, y要先去C点在去B点, 现在给出x, y两人可以行走的最大距离T1, T2, 求出他们从A点出发之后, 可以走的最长的公共路径. 我们先看 ...
- 全局光照:光线追踪、路径追踪与GI技术进化编年史
全局光照(Global Illumination,简称 GI), 作为图形学中比较酷的概念之一,是指既考虑场景中来自光源的直接光照,又考虑经过场景中其他物体反射后的间接光照的一种渲染技术. 大家常听到 ...
随机推荐
- 鲲鹏展翅|SphereEx 获华为鲲鹏技术认证
SphereEx Data Middleware 通过了华为鲲鹏技术认证并加入鲲鹏展翅伙伴计划,未来 SphereEx Data Middleware 产品将继续以分布式能力为基础,以数据安全.分布式 ...
- 实现前后端分离,最好的方案就是SPA(Single Page Application)
从通常意义来讲,说到必须,就是指最佳实践上,实现前后端分离,最好的方案就是SPA.所以才会有 前后端分离=SPA 的近似,忽视了其中的差别.但是,既然有疑问了,我们就来看一下,为什么SPA是实现前后端 ...
- Win10 配置JDK1.8 (JDK 8)环境变量
JDK的安装: 1. JDK安装过程中,一般X掉公共JRE,因为JDK包含了JRE: 环境变量的配置: 1. 打开环境变量,编辑系统变量,新建: 变量名:JAVA_HOME 变量值:D:\so ...
- 【UE4 C++】DateTime、Timespan 相关函数
基于UKismetMathLibrary DateTime 相关函数 Timespan 运算操作相关函数见尾部附录 /** Returns the date component of A */ UFU ...
- 【UE4 设计模式】状态模式 State Pattern
概述 描述 允许一个对象在其内部状态改变时改变它的行为,对象看起来似乎修改了它的类. 其别名为状态对象(Objects for States),状态模式是一种对象行为型模式. 有限状态机(FSMs) ...
- try-catch-finally面试题
try catch finally 执行顺序面试题总结 执行顺序 今天牛客网遇到这个题目,做对了,但是下面的评论却很值得看看 public class TestTry { public int add ...
- JVM:参数调优
JVM:参数调优 本笔记是根据bilibili上 尚硅谷 的课程 Java大厂面试题第二季 而做的笔记 前言 查看 JVM 系统默认值:使用 jps 和 jinfo 进行查看 -Xms:初始堆空间 - ...
- 欧姆龙plc通讯协议格式
欧姆龙CPM1A型plc与上位计算机通信的顺序是上位机先发出命令信息给PLC,PLC返回响应信息给上位 机.每次通信发送/接受的一组数据称为一"帧".帧由少于131个字符的数据构成 ...
- Gitflow branch与Docker image tag命名冲突怎么办?
谷歌还是比必应要好用一点. 在前公司,我根据主流的git flow 给团队搭建了一套devops流程,运行在 docker & k8s上. 在现代devops流程中,一般推荐使用git分支名或 ...
- 算法:N-皇后问题
一.八皇后问题 八皇后问题是一个以国际象棋为背景的问题:如何能够在8 × 8 的国际象棋棋盘上放置八个皇后(Queen),使得任何一个皇后都无法直接吃掉其他的皇后.为了达到此目的,任两个皇后都不能处于 ...