[AtcoderABC200E]Patisserie
[AtcoderABC200E]Patisserie
题面翻译
对于一个三元组\((i,j,k)\) 我们对它按如下要求进行升序排序:
第一关键词 \(i + j + k\) 即三者总和
第二关键词 \(i\)
第三关键词 \(j\)
特别的 我们给出了\(n\)
对于任何一个三元组\((i,j,k)\ i\in[1,n], j\in[1,n], k\in[1,n]都存在\)
现在给出\(P\) 求出排名为P的三元组的具体元素 即\((i,j,k)\)
\(n \leq 10^6\ \ k \leq 10^3\)
思路
也就是试填法
即枚举每一项元素 通过函数\(calc()\)计算该项排列或是数列的个数
根据排名快速确定每一位元素
现在的问题就是如何实现\(calc()\)
你可以通过打表 或是 硬推 得到一部分思路
根据第一个条件先确定第一位 (因为总和确定后面就好搞了
很容易可以发现
第一个条件就是再求\(
\begin{cases}
i + j + k = x \\
i \leq n \\
j \leq n \\
k \leq n \\
\end{cases}
\)的方案数
那么 随便 一算可以推出方案数
\begin{cases}
0,\quad x\in(-\infty,3)\cup(3n,\infty) \\
\frac{(x-1)(x-2)}{2},\quad x\in[3,3n]
\end{cases}
\]
或者说是
\begin{matrix}
x-1 \\
2 \\
\end{matrix}
\right)
\]
然后我们考虑一下加上限制
加上其中一项 就把它减去n算一下之前的g(x)
即\(g(x - n)\) 也就是
\begin{matrix}
x-n \\
2
\end{matrix}
\right)
\]
然后可以随意加其中一个 共有三种方案 系数为-3
任选其中两项、三项(好像用不到)同理
那么真正的方案书\(f(x)\)也就是
\]
补充:
这里还有一种DP写法 可能会好理解一些
本文就不再赘述 请读者自行思考或查阅
总结
这道题放在定位为普及模拟赛T2令人着实很吃惊
主要是时间较紧也就成了选手实力的分水岭
要看能不能往组合数的角度(插板法 也许吧)去想了
俺比赛的时候推出第一个式子以为是高阶等差数列 就开始没推出来
还是经验太少了 毕竟OI的数学题还是相对挺少的
Code
说实话真的短 就是思路挺妙的
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cctype>
#include <cstring>
using namespace std;
#define int long long
int read(int x = 0, bool f = false, char ch = getchar()) {
for (; !isdigit(ch); ch = getchar()) f |= (ch == '-');
for (; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + (ch ^ 48);
return f ? ~x + 1 : x;
}
int g(int x) {return x <= 2? 0 : ((x - 1) * (x - 2)) / 2;}
int f(int x, int y) {return g(x) - 3 * g(x - y) + 3 * g(x - 2 * y) - g(x - 3 * y);}
int n, k;
signed main() {
// freopen("cake.in", "r", stdin);
// freopen("cake.out", "w", stdout);
n = read(), k = read();
for (int i = 3; i <= 3 * n; ++i) {
if (k <= f(i,n)) {
for (int j = 1; j <= n; ++j) {
int mn = max(1ll, i - j - n), mx = min(n, i - j - 1ll);
if (mx < mn) continue;
if (k <= mx - mn + 1)
return printf("%lld %lld %lld\n", j, mn + k - 1, i - j - mn - k + 1), 0;
k -= mx - mn + 1;
}
} else k -= f(i,n);
}
}
[AtcoderABC200E]Patisserie的更多相关文章
- The 10 best sweet treats in Singapore
Every time I walk out of Changi airport's air-conditioning into the humid outdoors, there's a sweet ...
- AtCoder Beginner Contest 100 2018/06/16
A - Happy Birthday! Time limit : 2sec / Memory limit : 1000MB Score: 100 points Problem Statement E8 ...
- CET4
Directions: For this part, you are allowed 30 minutes to write a short essay on the challenges of st ...
- KYOCERA Programming Contest 2021(AtCoder Beginner Contest 200) 题解
KYOCERA Programming Contest 2021(AtCoder Beginner Contest 200) 题解 哦淦我已经菜到被ABC吊打了. A - Century 首先把当前年 ...
随机推荐
- Docker入门第五章
常用其他命令 后台启动容器 #命令 docker run -d 镜像名! [root@lvshihao /]# docker run -d centos 757173133e8e73985f024dc ...
- gRPC学习之四:实战四类服务方法
欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...
- Pikachu-Unsafe Filedownload模块
一.概述 文件下载功能在很多web系统上都会出现,一般我们当点击下载链接,便会向后台发送一个下载请求,一般这个请求会包含一个需要下载的文件名称,后台在收到请求后 会开始执行下载代码,将该文件名对应的文 ...
- .NET第三方补丁工具(Visual Patch)常用手册
SetupFactory简介 这是Indigo Rose(蓝玫瑰)公司开发的一套打包-补丁解决方案的补丁工具,相比Setup Factory,他的知名度似乎不太高,网上也很少找到相关资料,但是真的很简 ...
- springboot配置ssl-pfx
application.yml server: port: 9443 ssl: key-store: classpath:4148017_qra.meeno.net.pfx key-store-typ ...
- vue中v-show和v-if在显示和隐藏元素上的区别
v-show将元素隐藏是在dom节点上加style='display:none' v-if是直接将元素完全去掉 拿v-show示例,(v-if 也是一样,把下面的代码中v-show替换成v-if即可运 ...
- Qt元对象和属性系统详解
Qt 是一个用标准 C++ 编写的跨平台开发类库,它对标准 C++ 进行了扩展,引入了元对象系统.信号与槽.属性等特性,使应用程序的开发变得更高效. 本节将介绍 Qt 的这些核心特点,对于理解和编写高 ...
- SpringBoot2.0整合Quartz定时任务(持久化到数据库,更为简单的方式)
1. pom文件添加依赖 <dependencies> <dependency> <groupId>org.springframework.boot</gro ...
- Quartz任务调度(4)JobListener分版本超详细解析
JobListener 我们的jobListener实现类必须实现其以下方法: 方法 说明 getName() getName() 方法返回一个字符串用以说明 JobListener 的名称.对于注册 ...
- wpf toggleSwitch 的只读属性
xml code --------------------------------------------- <Page x:Class="UWPDemo.MainPage" ...