spark实时计算中会存在数据丢失和数据重复计算的场景,

在receiver收到数据且通过driver的调度executor开始计算数据的时候如果driver突然崩溃,则此时executor就会被杀掉,executor中的数据就会丢失,为了防止executor中的数据丢失,此时要通过WAL的方式让所有的数据通过例如hdfs的方式进行安全性容错处理,executor重启之后可以通过WAL进行恢复。这么做也会存在弊端,WAL会极大损伤spark steaming的receiver接收数据的性能,因为WAL也要容错性处理。第二个kafka本身是有副本的,receiver接收的时候也做了容错的副本,相当于容错了2次,造成资源的浪费。

receiver收到数据之后,进行了容错性处理,但是还没有来得及提交offset,此时receiver崩溃了,重启后通过管理kafka中元数据再次重启读取数据,但是此时spark认为读取成功了,kafka认为没有成功(offset没有提交),此时就会再读一次,而之前失败的数据因为spark.task.maxFallures的值,如果大于1,会再次重试计算,如果计算成功了,就会计算2次,造成重复计算.

direct的方式是从kafka消费完数据之后直接封装成partition的数据提供给作业使用,而receiver是将消费到数据按照blockInterval切分成block,保存到blockManager中,在使用时会根据blockId获取该数据。

另外direct的方式rdd的partition与topic的partition是一一对应的,如果某个topic只有一个partition就不好了。而receiver的partition是根据blockInterval切分出来的,blockInterval的默认值是200ms

spark-steaming的exactly-once的更多相关文章

  1. Spark Steaming消费kafka数据条数变少问题

    对于基于Receiver 形式,我们可以通过配置 spark.streaming.receiver.maxRate 参数来限制每个 receiver 每秒最大可以接收的记录的数据:对于 Direct ...

  2. spark streaming 实战

    最近在学习spark的相关知识, 重点在看spark streaming 和spark mllib相关的内容. 关于spark的配置: http://www.powerxing.com/spark-q ...

  3. Spark Streaming连接TCP Socket

    1.Spark Streaming是什么 Spark Streaming是在Spark上建立的可扩展的高吞吐量实时处理流数据的框架,数据可以是来自多种不同的源,例如kafka,Flume,Twitte ...

  4. 六、spark常见问题总结(转载)

    问题导读 1.当前集群的可用资源不能满足应用程序的需求,怎么解决? 2.内存里堆的东西太多了,有什么好办法吗?         1.WARN TaskSchedulerImpl: Initial jo ...

  5. Spark入门实战

    星星之火,可以燎原 Spark简介 Spark是一个开源的计算框架平台,使用该平台,数据分析程序可自动分发到集群中的不同机器中,以解决大规模数据快速计算的问题,同时它还向上提供一个优雅的编程范式,使得 ...

  6. 使用 Kafka 和 Spark Streaming 构建实时数据处理系统

    使用 Kafka 和 Spark Streaming 构建实时数据处理系统 来源:https://www.ibm.com/developerworks,这篇文章转载自微信里文章,正好解决了我项目中的技 ...

  7. Spark面试相关

    Spark Core面试篇01 随着Spark技术在企业中应用越来越广泛,Spark成为大数据开发必须掌握的技能.前期分享了很多关于Spark的学习视频和文章,为了进一步巩固和掌握Spark,在原有s ...

  8. Spark大数据针对性问题。

    1.海量日志数据,提取出某日访问百度次数最多的那个IP. 解决方案:首先是将这一天,并且是访问百度的日志中的IP取出来,逐个写入到一个大文件中.注意到IP是32位的,最多有个2^32个IP.同样可以采 ...

  9. Spark学习之概念了解

    Spark简介: Spark是一个快速且通用的集群计算模型: 1.Spark是快速的:快速是指处理几T到几批数据量的时候,他的处理时间是几秒钟或几分钟,相对于hadoop的几分钟到几小时是非常快速的, ...

  10. Hadoop概念学习系列之Hadoop、Spark学习路线(很值得推荐)(十八)

    不多说,直接上干货! 说在前面的话 此笔,对于仅对于Hadoop和Spark初中学者.高手请忽略! 1 Java基础: 视频方面:          推荐<毕向东JAVA基础视频教程>.学 ...

随机推荐

  1. Netty 框架学习 —— 第一个 Netty 应用

    概述 在本文,我们将编写一个基于 Netty 实现的客户端和服务端应用程序,相信通过学习该示例,一定能更全面的理解 Netty API 该图展示的是多个客户端同时连接到一台服务器.客户端建立一个连接后 ...

  2. Mybatis的简单增删改查

    刚开始学习Mybatis可以先看下官方文档,MyBatis是支持定制化SQL.存储过程以及高级映射的优秀的持久层框架.MyBatis避免了几乎所有的JDBC代码和手工设置参数以及抽取结果集.MyBat ...

  3. dedecms后台一些时间等验证方法(plus/diy.php)

    <?php if(trim(@$_POST['name'])==''){ $err=2; } if(trim(@$_POST['tel'])==''){ $err=1; }else{ @$_PO ...

  4. hdu2846 字典树(带id的)

    题意:      给你一些模式串,然后给你一些提问,每个提问是给你一个串,问你这个串在上 面的模式串中出现的次数. 思路:       一开始想到hash,但是因为用的是map,所以超时了,map的操 ...

  5. hdu1722 切蛋糕

    题意:CakeTime Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Subm ...

  6. PAT 乙级 -- 1001 -- 害死人不偿命的(3n+1)猜想

    题目: 卡拉兹(Callatz)猜想: 对任何一个自然数n,如果它是偶数,那么把它砍掉一半:如果它是奇数,那么把(3n+1)砍掉一半.这样一直反复砍下去,最后一定在某一步得到n=1.卡拉兹在1950年 ...

  7. Dalvik模式下System.loadLibrary函数的执行流程分析

    本文博客地址:http://blog.csdn.net/qq1084283172/article/details/78212010 Android逆向分析的过程中免不了碰到Android so被加固的 ...

  8. 【JavaScript】Leetcode每日一题-矩形区域不超过K的最大值和

    [JavaScript]Leetcode每日一题-矩形区域不超过K的最大值和 [题目描述] 给你一个 m x n 的矩阵 matrix 和一个整数 k ,找出并返回矩阵内部矩形区域的不超过 k 的最大 ...

  9. 码农飞升记-03-OpenJDK是什么?

    目录 1.OpenJDK 概述 2.OpenJDK 的发展史 3.OpenJDK Community 1.角色定义 Participant(参与者) Contributor(贡献者) OpenJDK ...

  10. 将文件服务器及域控制器从2003迁移至Windows Server 2008 R2

    (一)背景环境: 当前,多数小企业仍然使用windows server2003 系统做域控制器及文件服务器,由于windows server 2003在多年使用之后变得卡顿,且存在异常的系统错误及诟病 ...