正题

题目链接:https://uoj.ac/problem/454


题目大意

\(Alice\)有一个长度为\(2n\)的\(01\)串,\(Bob\)有\(n\)个在\([1,2n]\)位置的下标表示它想要得到\(01\)串中这些位置的值,现在两个人可以向对方传输不超过\(m\)个\(0/1\)字符,要求使得\(Bob\)可以得到答案。

\(1\leq n\leq 1000,m=1350\)


解题思路

两种方法,都是平均两边的传输信息。

第一种方法是从左到右传输\(01\)串,由\(Bob\)考虑若一个位置需要传输,那么传输\(1\),然后\(Alice\)传输这个位置给他并考虑下一个位置。否则传输\(0\),然后\(Alice\)跳过这个位置传输下一个位置给她然后再考虑下一个位置。

不难发现这样对于\(01\)隔开的情况可以省略很多次数,所以我们直接随机打乱整个序列然后这样做即可。

第二种方法是将序列分为三块,\(Bob\)用二进制告诉\(Alice\)需要信息最多的那个块。然后剩下两个块由\(Bob\)告诉\(Alice\)需要传输哪些位置。

这样的次数\(Alice\)严格小于\(\frac{2}{3}n\times 2\),\(Bob\)严格小于\(\frac{4}{3}n+2\),都在\(1350\)次内。

因为第二种方法比较普遍所以代码使用的是第一种方法


code

Alice

#include <iostream>
#include <fstream>
#include <string>
#include<cstdlib>
#include<cstdio>
#include<algorithm> using namespace std; ifstream fin;
char get_bit() {
return getchar();
}
void send_bit(char ch) {
putchar(ch);
fflush(stdout);
} int n, m,c[2100],r[2100];
string s;
void init_t() {
fin.open("alice.in");
fin >> n >> m >> s;
}
int Z=17;
int randd(){
Z++;
return (Z*1931ll+Z*Z*3ll)%32767;
}
int main()
{
init_t();
for(int i=1;i<=2*n;i++)r[i]=i;
for(int i=1;i<=20*n;i++)swap(r[randd()%(2*n)+1],r[randd()%(2*n)+1]);
for(int i=1;i<=2*n;i++)c[r[i]]=s[i-1];
int i=1;
// for(int i=1;i<=2*n;i++)send_bit(c[i]);
while(i<=2*n){
char z=get_bit();
if(z==EOF)break;
if(z=='1'){send_bit(c[i]);i++;}
else{i++;if(i>2*n)break;send_bit(c[i]);i++;}
}
return 0;
}

Bob

#include <iostream>
#include <fstream>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<algorithm> using namespace std; ifstream fin;
char get_bit() {
return getchar();
}
void send_bit(char ch) {
putchar(ch);
fflush(stdout);
} const int N = 1000; int n, m, p[N + 1],r[N*2+10],w[N*2+10];
char s[N+1];
ofstream fout;
void answer() {
fout.open("bob.out");
for(int i=1;i<=n;i++)
fout<<s[i];
fout<<endl;
exit(0);
}
void init_t() {
int x;
fin.open("bob.in");
fin >> n >> m;
for (x = 1; x <= n; ++x) fin >> p[x];
}
int Z=17;
int randd(){
Z++;
return (Z*1931ll+Z*Z*3ll)%32767;
}
int main() {
init_t();
for(int i=1;i<=2*n;i++)r[i]=i;
for(int i=1;i<=20*n;i++)swap(r[randd()%(2*n)+1],r[randd()%(2*n)+1]);
for(int i=1;i<=n;i++)p[i]=r[p[i]],w[p[i]]=i;
sort(p+1,p+1+n);
int z=1,i=1;
while(i<=n){
if(p[i]==z){send_bit('1');s[w[p[i]]]=get_bit();z++;i++;}
else{
send_bit('0');z++;
if(z>2*n)break;
s[w[p[i]]]=get_bit();
if(p[i]==z)i++;z++;
}
}
answer();
return 0;
}

UOJ#454-[UER #8]打雪仗【通信题】的更多相关文章

  1. UOJ#454. 【UER #8】打雪仗

    UOJ#454. [UER #8]打雪仗 http://uoj.ac/problem/454 分析: 好玩的通信题~ 把序列分成三块,\(bob\)先发出这三块中询问点最多的一块给\(alice\). ...

  2. 蕞短鹭(artskjid) (⭐通信题/模拟⭐)

    文章目录 题面(过于冗长,主要是对通信题的一些解释) 题解 1.通信题什么意思 2.此题题解 CODE 实现 题面(过于冗长,主要是对通信题的一些解释) 题解 1.通信题什么意思 并不是两个程序同时跑 ...

  3. UOJ #455 [UER #8]雪灾与外卖 (贪心、模拟费用流)

    题目链接 http://uoj.ac/contest/47/problem/455 题解 模拟费用流,一个非常神奇的东西. 本题即为WC2019 laofu的讲课中的Problem 8,经典的老鼠进洞 ...

  4. [UOJ#245][UER#7]天路(近似算法)

    允许5%的相对误差,意味着我们可以只输出$\log_{1.05} V$种取值并保证答案合法.并且注意到答案随着区间长度而单增,故取值不同的答案区间是$O(\log_{1.05} V)$的. 于是初始x ...

  5. 【bzoj4736/uoj#274】[清华集训2016]温暖会指引我们前行 语文题+LCT

    题目描述 http://uoj.ac/problem/274 题解 语文题+LCT 对于这种语文题建议还是自己读题好一些... 读懂题后发现:由于温度互不相同,最大生成树上的路径必须走(不走的话温度大 ...

  6. 【UOJ#228】基础数据结构练习题 线段树

    #228. 基础数据结构练习题 题目链接:http://uoj.ac/problem/228 Solution 这题由于有区间+操作,所以和花神还是不一样的. 花神那道题,我们可以考虑每个数最多开根几 ...

  7. NOIp2018停课刷题记录

    Preface 老叶说了高中停课但是初中不停的消息后我就为争取民主献出一份力量 其实就是和老师申请了下让我们HW的三个人听课结果真停了 那么还是珍惜这次机会好好提升下自己吧不然就\(AFO\)了 Li ...

  8. 省选/NOI刷题Day2

    bzoj2616 放一个车的时候相当于剪掉棋盘的一行,于是就可以转移了,中间状态转移dp套dp,推一下即可 bzoj2878 环套树期望dp 手推一下递推式即可 bzoj3295 树状数组套权值线段树 ...

  9. uoj#300.【CTSC2017】吉夫特

    题面:http://uoj.ac/problem/300 一道大水题,然而我并不知道$lucas$定理的推论.. $\binom{n}{m}$为奇数的充要条件是$n&m=n$.那么我们对于每个 ...

随机推荐

  1. Docker创建Gitea(git服务)

    背景 Gitea是流行的自托管Git服务Gogs的社区分支.gogs作者想一个人维护gogs,但是大家想一起维护.就把gogs项目fork了. 下面是gitea的介绍: https://blog.gi ...

  2. docker部署elasticsearch-+-Kibana(6-8)-+-SpringBoot-2-1-6

    elasticsearch快速开始 docker run -d --name elasticsearch --net somenetwork -p 9200:9200 -p 9300:9300 -e ...

  3. 多线程之旅(9)_如何安全的取消正在执行的线程——附C#源码

    参考网址: https://blog.csdn.net/yangwohenmai1/article/details/90404497 当线程能流畅安全的自动运行后,我们就要考虑一些更风骚的操作,就是如 ...

  4. 【mysql】截取查询分析

    1. 慢查询日志 1.1 是什么 (1)MySQL的慢查询日志是MySQL提供的一种日志记录,它用来记录在MySQL中响应时间超过阀值的语句,具体指运行时间超过long_query_time值的SQL ...

  5. python实现两台不同主机之间进行通信(客户端和服务端)——Socket

    大家好,我是辰哥~ 今天教大家通过Python进行Socket网络编程 (做一个聊天程序) 可以实现在不同的主机(电脑)之间进行通话. 具体效果如何,接着往下看 可以看到客户端(上方)向服务器端(下方 ...

  6. MySQL读写IO的操作过程解析

    数据库作为存储系统,所有业务访问数据的操作都会转化为底层数据库系统的IO行为(缓存系统也可以当做是key-value的数据库),本文主要介绍访问MySQL数据库的IO流程以及IO相关的参数. 一.My ...

  7. Powershell免杀从入门到实践

    转载https://www.jianshu.com/p/fb078a99e0d8 前言 文章首发于Freebuf 在之前发布的一篇 渗透技巧之Powershell实战思路 中,学习了powershel ...

  8. Python之requests模块-大文件分片上传

    最近在做接口测试时,拿到一个分片上传文件的接口,http接口请求头中的Content-Type为multipart/form-data.需要在客户端将大文件分片成数据块后,依次传给服务端,由服务端还原 ...

  9. GetX代码生成IDEA插件,超详细功能讲解(透过现象看本质)

    前言 本文章不是写getx框架的使用,而且其代码生成IDEA插件的功能讲解 我之前写过俩篇很长很长的getx文章 一篇入门使用:Flutter GetX使用---简洁的魅力! 一篇原理深度剖析:Flu ...

  10. 「山东省队集训2021 Round 1」 半夜

    考虑将 \(X\) 复制一次放到后面再对其长度为 \(n\) 的连续子串和 \(Y\) 求一波 \(\rm{Longest\ Common\ Subsequence}\) 就能得到 \(\Theta( ...