正题

题目链接:https://www.ybtoj.com.cn/contest/114/problem/1


题目大意

给出\(n\)个点\(m\)条边的一张无向图,对于每个点\(i\)求不经过\(i\sim 1\)的最短路的第一条边的情况下\(i\)到\(1\)的最短路

数据保证这条边唯一

\(n\in[1,10^5],m\in[1,2\times 10^5],c\in[1,10^3]\)


解题思路

因为保证的那个东西,所以图的最短路树真的是一棵树了,所以先跑出最短路树考虑在最短路树上面搞。

然后题目限制了我们不能从树上的祖先那条边过来,这样就分为了两种情况。一种是从该点的子树外面连过来的边,另一种是从子树中走上来的边。第二种很麻烦,因为子树的最短路是用该节点的最短路扩展的,所以不能直接使用。

考虑一条非树边\((x,y)\),这条边会扩展一条\(dis_y+w\)到\(x\)的路径。(\(dis_x\)表示\(1\sim x\)的最短路)。

并且这条边可以使用到\(LCA(x,y)\)处,此时\(x\)的祖先们都不包含\(y\)在子树内,可以直接用\(y\)的子树扩展。

所以可以维护一个左偏树,每次合并两个儿子的信息,如果堆顶的边需要被删除就删除。需要写一个\(lazy\)标记来修改整棵树

时间复杂度\(O(n\log n)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#include<vector>
#define mp(x,y) make_pair(x,y)
using namespace std;
const int N=4e5+10;
struct point{
int val,x,y;
point(int v=0,int xx=0,int yy=0)
{val=v;x=xx;y=yy;return;}
};
bool operator<(point x,point y)
{return x.val<y.val;}
struct Heap{
point val[N];
int t[N][2],lazy[N],dis[N];
void Downdata(int x){
if(!lazy[x])return;
int ls=t[x][0],rs=t[x][1];
lazy[ls]+=lazy[x];lazy[rs]+=lazy[x];
val[ls].val+=lazy[x];val[rs].val+=lazy[x];
lazy[x]=0;return;
}
int Merge(int x,int y){
Downdata(x);Downdata(y);
if(!x||!y)return x+y;
if(val[y]<val[x])swap(x,y);
int &ls=t[x][0],&rs=t[x][1];
rs=Merge(rs,y);
if(dis[rs]>dis[ls])swap(ls,rs);
dis[x]=dis[rs]+1;return x;
}
int Del(int x){
int &ls=t[x][0],&rs=t[x][1];val[x]=0;
return Merge(ls,rs);
}
}T;
struct node{
int to,next,w;
}a[N];
int n,m,tot,cnt,num,ls[N],f[N];
int rfn[N],p[N],ans[N];
bool v[N];vector<int> G[N];
priority_queue<pair<int,int> >q;
void addl(int x,int y,int w){
a[++tot].to=y;
a[tot].next=ls[x];
ls[x]=tot;a[tot].w=w;
return;
}
void dij(){
memset(f,0x3f,sizeof(f));
q.push(mp(0,1));f[1]=0;
while(!q.empty()){
int x=q.top().second;q.pop();
if(v[x])continue;v[x]=1;
for(int i=ls[x];i;i=a[i].next){
int y=a[i].to;
if(f[x]+a[i].w<f[y]){
f[y]=f[x]+a[i].w;
q.push(mp(-f[y],y));
}
}
}
return;
}
void dfs(int x){
rfn[x]=++cnt;
for(int i=0;i<G[x].size();i++){
int y=G[x][i];dfs(y);
T.val[p[y]].val+=f[y]-f[x];
T.lazy[p[y]]+=f[y]-f[x];
p[x]=T.Merge(p[x],p[y]);
}
for(int i=ls[x];i;i=a[i].next){
int y=a[i].to;
if(f[x]+a[i].w==f[y])continue;
if(f[y]+a[i].w==f[x])continue;
T.val[++num]=point(f[y]+a[i].w,x,y);
p[x]=T.Merge(p[x],num);
}
while(1){
if(!p[x]){ans[x]=-1;break;}
point w=T.val[p[x]];
if(rfn[w.y]>=rfn[x])
{p[x]=T.Del(p[x]);continue;}
ans[x]=w.val;break;
}
return;
}
int main()
{
freopen("pal.in","r",stdin);
freopen("pal.out","w",stdout);
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++){
int x,y,w;
scanf("%d%d%d",&x,&y,&w);
addl(x,y,w);addl(y,x,w);
}
dij();
for(int x=1;x<=n;x++)
for(int i=ls[x];i;i=a[i].next){
int y=a[i].to;
if(f[x]+a[i].w==f[y])
G[x].push_back(y);
}
dfs(1);
for(int i=2;i<=n;i++)
if(!ans[i])puts("-1");
else printf("%d\n",ans[i]);
return 0;
}

YbtOJ#631-次短路径【左偏树,最短路】的更多相关文章

  1. 左偏树(Leftist Heap/Tree)简介及代码

    左偏树是一种常用的优先队列(堆)结构.与二叉堆相比,左偏树可以高效的实现两个堆的合并操作. 左偏树实现方便,编程复杂度低,而且有着不俗的效率表现. 它的一个常见应用就是与并查集结合使用.利用并查集确定 ...

  2. 【BZOJ 1367】 1367: [Baltic2004]sequence (可并堆-左偏树)

    1367: [Baltic2004]sequence Description Input Output 一个整数R Sample Input 7 9 4 8 20 14 15 18 Sample Ou ...

  3. 『左偏树 Leftist Tree』

    新增一道例题 左偏树 Leftist Tree 这是一个由堆(优先队列)推广而来的神奇数据结构,我们先来了解一下它. 简单的来说,左偏树可以实现一般堆的所有功能,如查询最值,删除堆顶元素,加入新元素等 ...

  4. 洛谷.3273.[SCOI2011]棘手的操作(左偏树)

    题目链接 还是80分,不是很懂. /* 七个操作(用左偏树)(t2表示第二棵子树): 1.合并:直接合并(需要将一个t2中原有的根节点删掉) 2.单点加:把这个点从它的堆里删了,加了再插入回去(有负数 ...

  5. HDU 1512 Monkey King(左偏树模板题)

    http://acm.hdu.edu.cn/showproblem.php?pid=1512 题意: 有n只猴子,每只猴子一开始有个力量值,并且互相不认识,现有每次有两只猴子要决斗,如果认识,就不打了 ...

  6. luogu3261 懒惰左偏树 [JLOI2015]城池攻占

    目录 题目 思路 错误&&反思 代码 题目 luogu 原来左偏树真的能懒惰下放 那这篇博客应该要咕咕了 一开始我按照那篇博客想了一下,感觉emm,还是瞄了一眼看到了pushdown ...

  7. 1455: 罗马游戏[左偏树or可并堆]

    1455: 罗马游戏 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1861  Solved: 798[Submit][Status][Discuss] ...

  8. 洛谷 - P1552 - 派遣 - 左偏树 - 并查集

    首先把这个树建出来,然后每一次操作,只能选中一棵子树.对于树根,他的领导力水平是确定的,然后他更新答案的情况就是把他子树内薪水最少的若干个弄出来. 问题在于怎么知道一棵子树内薪水最少的若干个分别是谁. ...

  9. 洛谷 - P3377 - 【模板】左偏树(可并堆) - 左偏树 - 并查集

    https://www.luogu.org/problemnew/show/P3377 左偏树+并查集 左偏树维护两个可合并的堆,并查集维护两个堆元素合并后可以找到正确的树根. 关键点在于删除一个堆的 ...

随机推荐

  1. SQL server多表联合查询

    参考网址: https://blog.csdn.net/zou15093087438/article/details/79226394 1. 外连接可分为:左连接.右连接.完全外连接. a.  左连接 ...

  2. Raspberry Pi 中安装Mono

    摘自:http://www.phodal.com/blog/user-csharp-develop-raspberry-pi-application/ Raspberry Pi C# Mono Lin ...

  3. BeanUtils实现对象拷贝(三)

    package beanutil; import java.lang.reflect.InvocationTargetException; import java.util.Date; import ...

  4. 工作效率:通过pycharm的模板代码减少重复工作

    摘要 在常见的业务开发场景下,经常要开发大量重复的代码,这里代码耗时但又必要,就像我们写分析报告一样,每次都要为固定的格式耗费精力.我们可以更加日常开发经验总结出一些常用的模板代码来帮助我们实现一秒五 ...

  5. 跟着华为,学数字化转型(8):组织转型之业务IT一体化

    数字化时代,技术已经成了企业发展的重要驱动力,是转型中的企业不可或缺的力量.那采用什么样的组织结构,才能发挥出技术能力的最大价值呢?华为经历了多种组织形式,最终得出的结论是业务IT一体化组织是最合适的 ...

  6. vue3.0入门(三)

    前言 最近在b站上学习了飞哥的vue教程 学习案例已上传,下载地址 class绑定 对象绑定 :class='{active:isActive}' // 相当于class="active&q ...

  7. javascript 之迭代器

    简介 迭代器是一种设计模式,可在容器对象 如 链表.数组上遍历,无需关心容器对象的内存分配的实现细节.简单的理解就是可以一个一个的依次拿到其中的数据,类似一个移动的指针,但是会告诉我们什么时候结束.这 ...

  8. 基于Bootstrap v4.1.1 & Bootstrap-table-1.14.1实现数据瀑布流

    基于Bootstrap-table-1.14.1实现数据瀑布流 HTML代码 <div id="AvgWaitAndAvgTimeServiceTimeData_hall"& ...

  9. MyBatis学习总结(四)——字段名与实体类属性名不相同的冲突的解决

    表中的字段名和表对应实体类的属性名称不一定都是完全相同的,这种情况下的如何解决字段名与实体类属性名不相同的冲突.如下所示: 一.准备演示需要使用的表和数据 CREATE TABLE my_user( ...

  10. python tif转jpg

    在同级目录完成tif和jpg的批量转换 import os import cv2 import numpy as np from osgeo import gdal #数据格式转化 def norma ...