声明:

此博客参考了官网的配置方式,并结合笔者在实践网上部分帖子时的踩坑经历整理而成

这里贴上官方配置说明:

[官方]: https://cwiki.apache.org//confluence/display/Hive/Hive+on+Spark:+Getting+Started

大前提:

从Hive1.1开始支持使用Spark作为执行引擎,我们配置使用Spark On Yarn时,一定要注意

  • Hive版本与Spark版本的适配,不适配的需要自己重新编译使其适配

    这里贴上官方推荐的对应版本

    Hive Version Spark Version
    master 2.3.0
    3.0.x 2.3.0
    2.3.x 2.0.0
    2.2.x 1.6.0
    2.1.x 1.6.0
    2.0.x 1.5.0
    1.2.x 1.3.1
    1.1.x 1.2.0

    笔者这里使用的是hive-3.1.2,按理说应该使用spark-2.3.0作为对应,但出于业务要求需使用spark-3.1.2,故重新编译hive-3.1.2源码使其适配spark-3.1.2

  • Spark使用的jar包必须是没有集成Hive的

    因spark包自带hive,其支持的版本与我们使用的版本冲突(如spark-3.1.2默认支持的hive版本为2.3.7),故我们只需spark自身即可,不需其自带的hive模块



    两种方式去获得去hive的jar包

    • 从官网下载完整版的jar包,解压后将其jars目录下的hive相关jar包全部删掉(本文即使用此种方法)
    • 重新编译spark,但不指定-Phive

    注:网上部分帖子中所说使用“纯净版”,其实指的就是去hive版,而不是官方提供的without-hadoop版

下面进入正题

部署环境:CentOS 7.4 x86_64

Hive版本:3.1.2(重新编译过,修改了Spark版本和Scala版本,替换修改了部分源码,如有需要后续会出编译指导)

Spark版本:3.1.2(spark-3.1.2-bin-hadoop3.2.tgz,官网直接下载)

Hadoop版本:3.1.3(与Spark3.1.2自带hadoop版本3.2只差一个小版本,可直接使用,不用重新编译)

JDK版本:1.8.0_172

myql版本:5.7.32

步骤:

  1. 在机器上部署spark

解压

tar -zxvf spark-3.1.2-bin-hadoop3.2.tgz

设置环境变量

echo '#SPARK_HOME' >> /etc/profile
echo 'export SPARK_HOME=/data/apps/spark-3.1.2-bin-hadoop3.2' >> /etc/profile
echo 'export PATH=$PATH:$SPARK_HOME/bin' >> /etc/profile

准备去hive版本的spark-jars(!!!除了hive-storage-api-2.7.2.jar这个包!!!,如果用的spark是重新编译的且没有指定-Phive,这步可以省略)

cd $SPARK_HOME                         //进目录
mv jars/hive-storage-api-2.7.2.jar . //把这包先移出去
rm -rf jars/*hive* //删
mv hive-storage-api-2.7.2.jar jars/ //再移回去

将刚做好的spark-jars上传到hdfs

hdfs dfs -mkdir -p /spark-jars
hdfs dfs -put jars/* /spark-jars/

hdfs上创建spark-history存日志

hdfs dfs -mkdir -p /spark-history

  1. 在机器上部署hive

解压

tar -zxvf apache-hive-3.1.2-bin.tar.gz

注:解压后的hive还需要一些额外的包放在lib下,比如因元数据库换为mysql需要一个mysql-connector-java-5.1.48.jar,比如为了处理hive-3.1.2和hadoop-3.1.3中guava包版本冲突的问题需要把原lib下的guava19删了放一个guava27,再比如为了处理slf4j包冲突问题将lib下面log4j-slf4j-impl-2.10.0.jar删喽,这里都不做详细说明(已经够详细了吧/doge);且这些问题都可以通过重新编译hive解决,不过要费一番功夫

改名(非必要)

mv apache-hive-3.1.2-bin hive-3.1.2

设置环境变量

echo '#HIVE_HOME' >> /etc/profile
echo 'export HIVE_HOME=/data/apps/hive-3.1.2' >> /etc/profile
echo 'export PATH=$PATH:$HIVE_HOME/bin' >> /etc/profile

修改配置文件

  • hive-site.xml

注:该文件首先需要从hive-default.xml.template复制一份出来,里面参数根据自己需要调整,这里只讲hive-on-spark需要修改或新增的参数

  <!--Spark依赖位置,上面上传jar包的hdfs路径-->
<property>
<name>spark.yarn.jars</name>
<value>hdfs://bdp3install:8020/spark-jars/*</value>
</property> <!--Hive执行引擎,使用spark-->
<property>
<name>hive.execution.engine</name>
<value>spark</value>
</property> <!--Hive连接spark-client超时时间-->
<property>
<name>hive.spark.client.connect.timeout</name>
<value>30000ms</value>
</property>

  • hive-env.sh

注:该文件首先需要从hive-env.sh.template复制一份出来,里面参数根据自己需要调整,这里只讲hive-on-spark需要修改或新增的参数

# Set HADOOP_HOME to point to a specific hadoop install directory
HADOOP_HOME=${HADOOP_HOME:-/data/apps/hadoop-3.1.3} export HIVE_HOME=${HIVE_HOME:-/data/apps/hive-3.1.2} # Hive Configuration Directory can be controlled by:
export HIVE_CONF_DIR=${HIVE_CONF_DIR:-/data/apps/hive-3.1.2/conf} export METASTORE_PORT=9083
export HIVESERVER2_PORT=10000

  • spark-default.conf

注:直接vim生成吧,不用从spark目录再拷过来,更多的参数可以参考最上面的官方地址

spark.master             yarn
spark.eventLog.enabled true
spark.eventLog.dir hdfs://bdp3install:8020/spark-history
spark.executor.memory 4g
spark.driver.memory 4g
spark.serializer org.apache.spark.serializer.KryoSerializer
spark.executor.cores 2
spark.yarn.driver.memoryOverhead 400m

  1. 启动hive
cd $HIVE_HOME
nohup bin/hive --service metastore &
等metastore启完(9083端口被监听了) nohup bin/hive --service hiveserver2 &
等hiveserver2启完(10000端口被监听了)



4. 客户端连接测试

beeline
!connect jdbc:hive2://localhost:10000 hive ""

执行一些insert,同时观察下yarn,如果任务成功了,yarn上也有相应的application成功了,那就妥了





注:hive on spark任务是以每个spark session为单位提交到yarn的,每个yarn任务都有一次从hdfs加载spark-jars到容器中的过程,所以每次通过客户端执行命令时,第一次执行的速度会比较慢(因为加载jars,大约有200M),后续就很快了。

常见问题:

  1. java.lang.NoClassDefFoundError: org/apache/hadoop/hive/ql/exec/vector/ColumnVector

原因:spark-jars里少hive-storage-api-2.7.2.jar这个包



2. Could not load YARN classes. This copy of Spark may not have been compiled with YARN support.

原因:hiveserver2所在机器没有部署spark或spark非完整版,或spark版本与hive版本不对应



3. 各种各样的ClassNotFound,NoClassDefFoundError

原因:spark-jars不完整,一定要是去hive的完整版jar包(一般都是少hadoop的包)

此文章首发于博客园,希望能对大家有所帮助,如有遗漏或问题欢迎补充指正。

Hive On Spark保姆级攻略的更多相关文章

  1. 废弃fastjson!大型项目迁移Gson保姆级攻略

    前言 大家好,又双叒叕见面了,我是天天放大家鸽子的蛮三刀. 在被大家取关之前,我立下一个"远大的理想",一定要在这周更新文章.现在看来,flag有用了... 本篇文章是我这一个多月 ...

  2. Pyspark spark-submit 集群提交任务以及引入虚拟环境依赖包攻略

    网上提交 scala spark 任务的攻略非常多,官方文档其实也非常详细仔细的介绍了 spark-submit 的用法.但是对于 python 的提交提及得非常少,能查阅到的资料非常少导致是有非常多 ...

  3. 【转】Hive安装及使用攻略

    Posted: Jul 16, 2013 Tags: HadoophiveHiveQLsql分区表 Comments: 18 Comments Hive安装及使用攻略 让Hadoop跑在云端系列文章, ...

  4. 微信小程序——【百景游戏小攻略】

    微信小程序--[百景游戏小攻略] 本次课程小项目中的图片以及文章还未获得授权!请勿商用!未经授权,请勿转载! 博客班级 https://edu.cnblogs.com/campus/zjcsxy/SE ...

  5. 【C#代码实战】群蚁算法理论与实践全攻略——旅行商等路径优化问题的新方法

    若干年前读研的时候,学院有一个教授,专门做群蚁算法的,很厉害,偶尔了解了一点点.感觉也是生物智能的一个体现,和遗传算法.神经网络有异曲同工之妙.只不过当时没有实际需求学习,所以没去研究.最近有一个这样 ...

  6. Windows下LATEX排版论文攻略—CTeX、JabRef使用介绍

    Windows下LATEX排版论文攻略—CTeX.JabRef使用介绍 一.工具介绍 TeX是一个很好排版工具,在学术界十分流行,特别是数学.物理学和计算机科学界. CTeX是TeX中的一个版本,指的 ...

  7. Python环境下NIPIR(ICTCLAS2014)中文分词系统使用攻略

    一.安装 官方链接:http://pynlpir.readthedocs.org/en/latest/installation.html 官方网页中介绍了几种安装方法,大家根据个人需要,自行参考!我采 ...

  8. Apache Spark源码走读之12 -- Hive on Spark运行环境搭建

    欢迎转载,转载请注明出处,徽沪一郎. 楔子 Hive是基于Hadoop的开源数据仓库工具,提供了类似于SQL的HiveQL语言,使得上层的数据分析人员不用知道太多MapReduce的知识就能对存储于H ...

  9. 30天,O2O速成攻略【8.16武汉站】

    活动概况 时间:2015年08月16日13:30-16:30 地点:光谷创业咖啡(光谷广场资本大厦一楼停车场内) 主办:APICloud.爱立示.MBA移动业务助理 网址:www.apicloud.c ...

随机推荐

  1. SpringBoot监听redis过期key

    开启过期监听 vim /etc/redis.conf 取消notify-keyspace-events Elg的注释 pom.xml 添加: <dependency> <groupI ...

  2. HBuilder mui 手机app开发 Android手机app开发 ios手机app开发

    经过一段时间的学习,做公司项目,对mui框架有了更加深入完整的了解,其实刚开始接触HBuilder中的mui框架只是简单的了解,并没有深入的研究,后来由于工作的需求,不得不深入研究,并运用的项目中去. ...

  3. HttpClient4.3教程 第四章 HTTP认证

    HttpClient既支持HTTP标准规范定义的认证模式,又支持一些广泛使用的非标准认证模式,比如NTLM和SPNEGO. 4.1.用户凭证 任何用户认证的过程,都需要一系列的凭证来确定用户的身份.最 ...

  4. 14.SpringMVC之文件上传下载

    SpringMVC通过MultipartResolver(多部件解析器)对象实现对文件上传的支持. MultipartResolver是一个接口对象,需要通过它的实现类CommonsMultipart ...

  5. 进程上下文&中断上下文

    文章出自http://hi.baidu.com/bkhcvzdvmjfkpyr/item/5444001fa68d065bf1090ea6 处理器总处于以下状态中的一种: 1.内核态,运行于进程上下文 ...

  6. 参数化SQL

    原文:http://www.cnblogs.com/aito/archive/2010/08/25/1808569.html 避免SQL注入的方法有两种:一是所有的SQL语句都存放在存储过程中,这样不 ...

  7. 关于servlet中doGet和doPost乱码再一次理解

    今天系统的整理了在web项目下,出现的编码问题,下面就做一些总结: 首先对HTTP协议中对GET和POST的定义:   GET POST 后退按钮/刷新 无害 数据会被重新提交(浏览器应该告知用户数据 ...

  8. 痞子衡嵌入式:MCUXpresso IDE下SDK工程在Build配置上与IAR,MDK差异

    大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家介绍的是MCUXpresso IDE下SDK工程在Build配置上与IAR,MDK差异. 恩智浦 SW 团队每个季度都会公布 SDK.Tool ...

  9. JavaScript——字符串——模板字符串

    JavaScript--字符串--模板字符串 字符串可以用反引号包裹起来,其中的${expression}表示特殊的含义,JavaScript会将expression代表的变量的值和反引号中的其它普通 ...

  10. 面试官:如何实现LRU?你学会了吗?

    面试官:来了,老弟,LRU缓存实现一下? 我:直接LinkedHashMap就好了. 面试官:不要用现有的实现,自己实现一个. 我:..... 面试官:回去等消息吧.... 大家好,我是程序员学长,今 ...