\(\mathcal{Description}\)

  Link.

  给定一棵含 \(n\) 个结点的树,结点 \(1\) 为根,点 \(u\) 初始有点权 \(a_u=0\),维护 \(q\) 次操作:

  1. 给定 \(u\),将 \(u\) 子树内的点权加 \(1\);
  2. 给定 \(u,v\),将 \(u,v\) 简单路径上的点权加 \(1\)。

  每次操作后,求出树最靠近结点 \(1\) 的带权重心。

  \(n,q\le10^5\)。

\(\mathcal{Solution}\)

  记点权和为 \(S\),发现这么一个事情:

从 \(1\) 开始任意 DFS 树,在经过点权和不小于 \(\lceil\frac{S}{2}\rceil\) 时停止在结点 \(x\),则带权重心为 \(x\) 及其祖先中的某一个。

当然转化在 DFN 序列上更简洁

DFN 序列的前缀和恰好超过 \(\lceil\frac{S}{2}\rceil\) 的位置就是上述 \(x\) 的 DFN。

  证明上,这样的遍历把树分为一个点权和不小于 \(\lceil\frac{S}{2}\rceil\) 的连通块 \(A\) 和若干连通块 \(B\)。注意带权重心的基本性质是以重心为根时,不存在一条连向点权和大于 \(\lfloor\frac{S}{2}\rfloor\) 的子树。首先考虑 \(B\) 中的结点 \(u\),若 \(u\) 能成为重心,其父亲必然也能成为重心,而且其父亲更靠近 \(1\),所以 \(u\) 不优;对于 \(A\) 中不是 \(x\) 祖先的结点同理,所以证明了这条性质。

  回到本题,难点已经扫除了。树剖维护点权,线段树二分找到 \(x\),倍增祖先找到重心即可。复杂度 \(\mathcal O(q\log^2n)\)。

\(\mathcal{Code}\)

/*~Rainybunny~*/

#include <cstdio>

#define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i ) typedef long long LL; const int MAXN = 1e5, MAXLG = 16;
int n, ecnt, head[MAXN + 5], ans = 1;
struct Edge { int to, nxt; } graph[MAXN * 2 + 5];
int fa[MAXN + 5][MAXLG + 5], siz[MAXN + 5], son[MAXN + 5], dep[MAXN + 5];
int dfc, dfn[MAXN + 5], top[MAXN + 5], ref[MAXN + 5]; inline void link( const int u, const int v ) {
graph[++ecnt] = { v, head[u] }, head[u] = ecnt;
graph[++ecnt] = { u, head[v] }, head[v] = ecnt;
} inline void init( const int u ) {
dep[u] = dep[fa[u][0]] + 1, siz[u] = 1;
for ( int i = 1; fa[u][i - 1]; fa[u][i] = fa[fa[u][i - 1]][i - 1], ++i );
for ( int i = head[u], v; i; i = graph[i].nxt ) {
if ( ( v = graph[i].to ) != fa[u][0] ) {
fa[v][0] = u, init( v ), siz[u] += siz[v];
if ( siz[v] > siz[son[u]] ) son[u] = v;
}
}
} inline void init( const int u, const int tp ) {
top[u] = tp, ref[dfn[u] = ++dfc] = u;
if ( son[u] ) init( son[u], tp );
for ( int i = head[u], v; i; i = graph[i].nxt ) {
if ( ( v = graph[i].to ) != fa[u][0] && v != son[u] ) {
init( v, v );
}
}
} struct SegmentTree {
int len[MAXN << 2];
LL sum[MAXN << 2], tag[MAXN << 2]; inline void pushad( const int u, const LL v ) {
sum[u] += len[u] * v, tag[u] += v;
} inline void pushup( const int u ) {
sum[u] = sum[u << 1] + sum[u << 1 | 1];
} inline void pushdn( const int u ) {
if ( tag[u] ) {
pushad( u << 1, tag[u] ), pushad( u << 1 | 1, tag[u] );
tag[u] = 0;
}
} inline void init( const int u, const int l, const int r ) {
len[u] = r - l + 1;
if ( l == r ) return ;
int mid = l + r >> 1;
init( u << 1, l, mid ), init( u << 1 | 1, mid + 1, r );
} inline void add( const int u, const int l, const int r,
const int al, const int ar, const int v ) {
if ( al <= l && r <= ar ) return pushad( u, v );
int mid = l + r >> 1; pushdn( u );
if ( al <= mid ) add( u << 1, l, mid, al, ar, v );
if ( mid < ar ) add( u << 1 | 1, mid + 1, r, al, ar, v );
pushup( u );
} inline LL qsum( const int u, const int l, const int r,
const int ql, const int qr ) {
if ( ql <= l && r <= qr ) return sum[u];
int mid = l + r >> 1; LL ret = 0; pushdn( u );
if ( ql <= mid ) ret += qsum( u << 1, l, mid, ql, qr );
if ( mid < qr ) ret += qsum( u << 1 | 1, mid + 1, r, ql, qr );
return ret;
} inline int qhalf( const int u, const int l, const int r, const LL h ) {
if ( l == r ) return l;
int mid = l + r >> 1; pushdn( u );
if ( sum[u << 1] >= h ) return qhalf( u << 1, l, mid, h );
else return qhalf( u << 1 | 1, mid + 1, r, h - sum[u << 1] );
}
} sgt; inline void subtrAdd( const int u ) {
sgt.add( 1, 1, n, dfn[u], dfn[u] + siz[u] - 1, 1 );
} inline void chainAdd( int u, int v ) {
while ( top[u] != top[v] ) {
if ( dep[top[u]] < dep[top[v]] ) u ^= v ^= u ^= v;
sgt.add( 1, 1, n, dfn[top[u]], dfn[u], 1 ), u = fa[top[u]][0];
}
if ( dep[u] < dep[v] ) u ^= v ^= u ^= v;
sgt.add( 1, 1, n, dfn[v], dfn[u], 1 );
} inline void solve() {
int u = ref[sgt.qhalf( 1, 1, n, sgt.sum[1] + 1 >> 1 )];
per ( i, MAXLG, 0 ) {
int v = fa[u][i];
if ( v && sgt.qsum( 1, 1, n, dfn[v],
dfn[v] + siz[v] - 1 ) << 1 <= sgt.sum[1] ) {
u = fa[v][0];
}
}
if ( fa[u][0] && sgt.qsum( 1, 1, n, dfn[u],
dfn[u] + siz[u] - 1 ) << 1 <= sgt.sum[1] ) u = fa[u][0];
printf( "%d\n", u );
} int main() {
scanf( "%d", &n );
rep ( i, 2, n ) {
int u, v; scanf( "%d %d", &u, &v );
link( u, v );
} init( 1 ), init( 1, 1 ), sgt.init( 1, 1, n ); int q, op, u, v; scanf( "%d", &q );
while ( q-- ) {
scanf( "%d %d", &op, &u );
if ( op == 1 ) subtrAdd( u );
else scanf( "%d", &v ), chainAdd( u, v );
solve();
}
return 0;
}

Solution -「Gym 102759I」Query On A Tree 17的更多相关文章

  1. Solution -「Gym 102979E」Expected Distance

    \(\mathcal{Description}\)   Link.   用给定的 \(\{a_{n-1}\},\{c_n\}\) 生成一棵含有 \(n\) 个点的树,其中 \(u\) 连向 \([1, ...

  2. Solution -「Gym 102979L」 Lights On The Road

    \(\mathcal{Description}\)   Link.   给定序列 \(\{w_n\}\),选择 \(i\) 位置的代价为 \(w_i\),要求每个位置要不被选择,要不左右两个位置至少被 ...

  3. Solution -「Gym 102956F」Find the XOR

    \(\mathcal{Description}\)   Link.   给定 \(n\) 个点 \(m\) 条边的连通无向图 \(G\),边有边权.其中 \(u,v\) 的距离 \(d(u,v)\) ...

  4. Solution -「Gym 102956B」Beautiful Sequence Unraveling

    \(\mathcal{Description}\)   Link.   求长度为 \(n\),值域为 \([1,m]\) 的整数序列 \(\lang a_n\rang\) 的个数,满足 \(\not\ ...

  5. Solution -「Gym 102956F」Border Similarity Undertaking

    \(\mathcal{Description}\)   Link.   给定一张 \(n\times m\) 的表格,每个格子上写有一个小写字母.求其中长宽至少为 \(2\),且边界格子上字母相同的矩 ...

  6. Solution -「Gym 102956A」Belarusian State University

    \(\mathcal{Description}\)   Link.   给定两个不超过 \(2^n-1\) 次的多项式 \(A,B\),对于第 \(i\in[0,n)\) 个二进制位,定义任意一个二元 ...

  7. Solution -「Gym 102798I」Sean the Cuber

    \(\mathcal{Description}\)   Link.   给定两个可还原的二阶魔方,求从其中一个状态拧到另一个状态的最小步数.   数据组数 \(T\le2.5\times10^5\). ...

  8. Solution -「Gym 102798K」Tree Tweaking

    \(\mathcal{Description}\)   Link.   给定排列 \(\{p_n\}\),求任意重排 \(p_{l..r}\) 的元素后,将 \(\{p_n\}\) 依次插入二叉搜索树 ...

  9. Solution -「Gym 102798E」So Many Possibilities...

    \(\mathcal{Description}\)   Link.   给定非负整数序列 \(\{a_n\}\) 和 \(m\),每次随机在 \(\{a\}\) 中取一个非零的 \(a_i\)(保证存 ...

随机推荐

  1. 总结关于spring security 使用 JWT 和 账户密码登录 整合在一起的新感悟

    (1)jwt登录拦截,需要在账户密码认证之前进行jwt认证,因此jwt拦截需要在 UsernamePasswordAuthenticationFilter 之前: (2)jwt验证通过则不需要执行账户 ...

  2. Android官方文档翻译 十二 3.Supporting Different Devices

    Supporting Different Devices 支持不同设备 Dependencies and prerequisites 依赖关系和先决条件 Android 1.6 or higher A ...

  3. 『德不孤』Pytest框架 — 3、Pytest的基础说明

    目录 1.Pytest参数介绍 2.Pytest框架用例命名规则 3.Pytest Exit Code说明 4.pytest.ini全局配置文件 5.Pytest执行测试用例的顺序 1.Pytest参 ...

  4. 春节将至,喜庆的烟花安排上(js实现烟花)

    一年一度的春节即将来临,然后苦逼的我还在使劲的摸鱼,未能回家体验小时候路边放爆竹的快乐时光,所以只能在网上来实现这个小小的心愿了.烟花静态效果图如下: 为了大伙复制方便就不分开写,直接复制即可,具体实 ...

  5. Android 12(S) 图形显示系统 - SurfaceFlinger的启动和消息队列处理机制(四)

    1 前言 SurfaceFlinger作为Android图形显示系统处理逻辑的核心单元,我们有必要去了解其是如何启动,初始化及进行消息处理的.这篇文章我们就来简单分析SurfaceFlinger这个B ...

  6. pycharm中操作git

    pycharm操作git 1.找到VCS 2.

  7. Linux 集群 和免秘钥登录的方法。

    /* 1.1.什么是集群? 很多台服务器(计算机)做相同的事,就称之为集群 服务器和服务器之间必须要处于联通状态(linux01和linux02可以相互访问并且传输数据) 服务器的配置和常见的计算机没 ...

  8. gcc 11.2 在线升级

    环境:centos 7 1.准备开发环境 $ yum groupinstall "Development Tools" $ yum install glibc-static lib ...

  9. 使用OpenFileDialog打开文件和使用FolderBrowserDialog选定文件夹

    选定文件夹 string foldPath = ""; FolderBrowserDialog dialog = new FolderBrowserDialog(); dialog ...

  10. Velero:备份、迁移Kubernetes集群资源和PV

    Velero基本介绍 官方文档:https://velero.io/docs/v1.4/ 基本工作原理: 不管需求是实现什么,比如:集群迁移.恢复.备份,其核心都是通过velero client CL ...